References
- Z. Yazdanfar, A. Sharma, Urban drainage system planning and
design—challenges with climate change and urbanization: a
review, Water Sci. Technol., 72 (2015) 165–179.
- T.D. Fletcher, W. Shuster, W.F. Hunt, R. Ashley, D. Butler,
S. Arthur, S. Trowsdale, S. Barraud, A. Semadeni-Davies,
J. Bertrand-Krajewski, P.S. Mikkelsen, G. Rivard, M. Uhl,
D. Dagenais, P.S. Mikkelsen, SUDS, LID, BMPs, WSUD
and more—the evolution and application of terminology
surrounding urban drainage, Urban Water J., 12 (2015) 525–542.
- L. Hoang, R.A. Fenner, System interactions of stormwater
management using sustainable urban drainage systems and
green infrastructure, Urban Water J., 13 (2016) 739–758.
- A.P. Davis, W.F. Hunt, R.G. Traver, M. Clar, Bioretention
technology: overview of current practice and future needs,
J. Environ. Eng.-ASCE, 135 (2009) 109–117.
- A. Roy-Poirier, P. Champagne, Y. Filion, Review of bioretention
system research and design: past, present, and future, J. Environ.
Eng.-ASCE, 136 (2010) 878–889.
- M. Shafiquea, R. Kima, Green stormwater infrastructure with
low impact development concept: a review of current research,
Desal. Wat. Treat., 83 (2017) 16–29.
- A.P. Davis, R.H. McCuen, Stormwater Management for Smart
Growth, Springer, New York, 2005.
- K.A. Collins, T.J. Lawrence, E.K. Stander, R.J. Jontos, S.S. Kaushal,
T.A. Newcomer, N.B. Grimm, C.M.L. Ekberg, Opportunities and
challenges for managing nitrogen in urban stormwater: a review
and synthesis, Ecol. Eng., 36 (2010) 1507–1519.
- G.H. LeFevre, K.H. Paus, P. Natarajan, J.S. Gulliver, P.J. Novak,
R.M. Hozalski, Review of dissolved pollutants in urban storm
water and their removal and fate in bioretention cells, J. Environ.
Eng.-ASCE, 141 (2014) 04014050.
- L. Li, A.P. Davis, Urban stormwater runoff nitrogen composition
and fate in bioretention systems, Environ. Sci. Technol., 48
(2014) 3403–3410.
- J. Li, A.P. Davis, A unified look at phosphorus treatment using
bioretention, Water Res., 90 (2016) 141–155.
- E.G. Payne, T. Pham, P.L. Cook, T.D. Fletcher, B.E. Hatt,
A. Deletic, Biofilter design for effective nitrogen removal from
stormwater—influence of plant species, inflow hydrology
and use of a saturated zone, Water Sci. Technol., 69 (2014)
1312–1319.
- G.T. Blecken, Y. Zinger, A. Deletić, T.D. Fletcher, M. Viklander,
Impact of a submerged zone and a carbon source on heavy metal
removal in stormwater biofilters, Ecol. Eng., 35 (2009) 769–778.
- Z. Zhang, Z. Rengel, T. Liaghati, T. Antoniette, K. Meney,
Influence of plant species and submerged zone with carbon
addition on nutrient removal in stormwater biofilter, Ecol. Eng.,
37 (2011) 1833–1841.
- W.F. Hunt, A.P. Davis, R.G. Traver, Meeting hydrologic and
water quality goals through targeted bioretention design,
J. Environ. Eng.-ASCE, 138 (2011) 698–707.
- E. Passeport, W.F. Hunt, D.E. Line, R.A. Smith, R.A. Brown,
Field study of the ability of two grassed bioretention cells to
reduce storm-water runoff pollution, J. Irrig. Drain. E.-ASCE,
135 (2009) 505–510.
- H. Kim, E.A. Seagren, A.P. Davis, Engineered bioretention for
removal of nitrate from stormwater runoff, Water Environ. Res.,
75 (2003) 355–367.
- D. Wei, R.P. Singh, J. Liu, D. Fu, Effect of alternate dry-wet
patterns on the performance of bioretention units for nitrogen
removal, Desal. Wat. Treat., 59 (2017) 295–303.
- Z. Zhang, Z. Rengel, T. Liaghati, A. Torre, K. Meney, Influence
of plant species and submerged zone with carbon addition on
the removal of metals by stormwater biofilters, Desal. Wat.
Treat., 52 (2014) 4282–4291.
- A.P. Davis, Field performance of bioretention: water quality,
Environ. Eng. Sci., 24 (2007) 1048–1064.
- H. Guo, F.Y. Lim, Y. Zhang, L.Y. Lee, J.Y. Hu, S.L. Ong,
W.K. Yau, G.S. Ong, Soil column studies on the performance
evaluation of engineered soil mixes for bioretention systems,
Desal. Wat. Treat., 54 (2015) 3661–3667.
- K. Björklund, L. Li, Removal of organic contaminants in
bioretention medium amended with activated carbon
from sewage sludge, Environ. Sci. Pollut. Res., 24 (2017)
19167–19180.
- B.J. Glaister, T.D. Fletcher, P.L. Cook, B.E. Hatt, Co-optimisation
of phosphorus and nitrogen removal in stormwater biofilters:
the role of filter media, vegetation and saturated zone, Water
Sci. Technol., 69 (2014) 1961–1969.
- S.W. O’Neill, A.P. Davis, Water treatment residual as a
bioretention amendment for phosphorus. I: Evaluation studies,
J. Environ. Eng.-ASCE, 138 (2012) 318–327.
- W.C. Lucas, M. Greenway, Phosphorus retention by bioretention
mesocosms using media formulated for phosphorus sorption:
response to accelerated loads, J. Irrig. Drain. E.-ASCE, 137
(2010) 144–153.
- J. Liu, A.P. Davis, Phosphorus speciation and treatment using
enhanced phosphorus removal bioretention, Environ. Sci.
Technol., 48 (2013) 607–614.
- E.T. Palmer, C.J. Poor, C. Hinman, J.D. Stark, Nitrate and
phosphate removal through enhanced bioretention media:
mesocosm study, Water Environ. Res., 85 (2013) 823–832.
- Q. Yan, A.P. Davis, B.R. James, Enhanced organic phosphorus
sorption from urban stormwater using modified bioretention
media: batch studies, J. Environ. Eng.-ASCE, 142 (2016)
04016001.
- S. Kandel, J. Vogel, C. Penn, G. Brown, Phosphorus retention by
fly ash amended filter media in aged bioretention cells, Water, 9
(2017) 746.
- Q. Yan, B.R. James, A.P. Davis, Bioretention media for enhanced
permeability and phosphorus sorption from synthetic urban
stormwater, J. Sust. Water Built. Environ., 4 (2018) 04017013.
- H. Iqbal, M. Garcia-Perez, M. Flury, Effect of biochar on leaching
of organic carbon, nitrogen, and phosphorus from compost in
bioretention systems, Sci. Total Environ., 521(2015) 37–45.
- B.A. Ulrich, M. Loehnert, C.P. Higgins, Improved contaminant
removal in vegetated stormwater biofilters amended with
biochar, Environ. Sci.: Water Res. Technol., 3 (2017) 726–734.
- Y. Xu, C. Yan, B. Xu, X. Ruan, Z. Wei, The use of urban river
sediments as a primary raw material in the production of highly
insulating brick, Ceram. Int., 40 (2014) 8833–8840.
- A. Kasmi, N.E. Abriak, M. Benzerzour, H. Azrar, Environmental
impact and mechanical behavior study of experimental road
made with river sediments: recycling of river sediments in
road construction, J. Mater. Cycles Waste Manage., 19 (2017)
1405–1414.
- R. Snellings, L. Horckmans, C. Van Bunderen, L. Vandewalle,
Ö. Cizer, Flash-calcined dredging sediment blended cements:
effect on cement hydration and properties, Mater. Struct., 50
(2017) 241.
- I. Müller, E. Pluquet, Immobilization of heavy metals in
sediment dredged from a seaport by iron bearing materials,
Water Sci. Technol., 37 (1998) 379–386.
- L.D.S. Borma, M. Ehrlich, M.C. Barbosa, Acidification and
release of heavy metals in dredged sediments, Can. Geotech. J.,
40 (2003) 1154–1163.
- W. Zhang, W. Che, D.K. Liu, Y.P. Gan, F.F. Lv, Characterization
of runoff from various urban catchments at different spatial
scales in Beijing, China, Water Sci. Technol., 66 (2012) 21–27.
- K. Zhang, W. Che, W. Zhang, Y. Zhao, Discussion about initial
runoff and volume capture ratio of annual rainfall, Water Sci.
Technol., 74 (2016) 1764–1772.
- APHA, AWWA, WEF, Standard Methods for the Examination
of Water and Wastewater, 22nd ed., American Public Health
Association, Washington, 2012.
- H.A. Elliott, G.A. O’Connor, P. Lu, S. Brinton, Influence of water
treatment residuals on phosphorus solubility and leaching,
J. Environ. Qual., 4 (2002) 1362–1369.
- R.O. Maguire, J.T. Sims, Soil testing to predict phosphorus
leaching, J. Environ. Qual. 5 (2002) 1601–1609.
- I.J. Peterson, S. Igielski, A.P. Davis, Enhanced denitrification
in bioretention using woodchips as an organic carbon source,
J. Sust. Water Built. Environ., 1 (2015) 04015004.
- H.W. Goh, N.A. Zakaria, T.L. Lau, K.Y. Foo, C.K. Chang,
C.S. Leow, Mesocosm study of enhanced bioretention media in
treating nutrient rich stormwater for mixed development area,
Urban Water J., 14 (2017) 134–142.
- J.J. Sansalone, S.G. Buchberger, Partitioning and first flush of
metals in urban roadway storm water, J. Environ. Eng.-ASCE,
123 (1997) 134–143.