References

  1. M. Gmurek, M. Olak-Kucharczyk, S. Ledakowicz, Photochemical decomposition of endocrine disrupting compounds – a review, Chem. Eng. J., 310 (2017) 437–456.
  2. T. Olmez-Hanci, I. Arslan-Alaton, B. Genc, Bisphenol a treatment by the hot persulfate process: oxidation products and acute toxicity, J. Hazard. Mater., 263 (2016) 283.
  3. A.F. Torovélez, C.A. Maderaparra, M.R. Peñavarón, W.Y. Lee, J.C. Bezares-Cruz, W.S. Walker, H. Cardenas-Henao, S. Quesada-Calderon, BPA and NP removal from municipal wastewater by tropical horizontal subsurface constructed wetlands, Sci. Total. Environ., 542 (2016) 93–101.
  4. A. Bhatnagar, I. Anastopoulos, Adsorptive removal of bisphenol A (BPA) from aqueous solution: a review, Chemosphere, 168 (2016) 885–902.
  5. S. Gao, C. Guo, J. Lv, Q. Wang, Y. Zhang, S. Hou, J. Gao, J. Xu, A novel 3D hollow magnetic Fe3O4/BiOI heterojunction with enhanced photocatalytic performance for bisphenol A degradation, Chem. Eng. J., 307 (2017) 1055–1065.
  6. X. He, W.G. Aker, M. Pelaez, Y. Lin, D. Dionysiou, H. Hwang, Assessment of nitrogen-fluorine-codoped TiO2 under visible light for degradation of BPA: implication for field remediation, J. Photoch. Photobio. A, 314 (2016) 81–92.
  7. J. Rajasarkka, M. Pernica, J. Kuta, J. Lasnak, Z. Simek, L. Blaha, Drinking water contaminants from epoxy resin-coated pipes: a field study, Water Res., 103 (2016) 133–140.
  8. B. Cedat, C.D. Brauer, H. Metivier, N. Dumont, R. Tutundjan, Are UV photolysis and UV/H2O2 process efficient to treat estrogens in waters? Chemical and biological assessment at pilot scale, Water Res., 100 (2016) 357–366.
  9. J.R. Koduru, L.P. Lingamdinne, J. Singh, K. Choo, Effective removal of bisphenol A (BPA) from water using a goethite/activated carbon composite, Process Saf. Environ., 103 (2016) 87–96.
  10. Y. Chen, K. Liu, Fabrication of magnetically recyclable Ce/N co-doped TiO2/NiFe2O4/diatomite ternary hybrid: improved photocatalytic efficiency under visible light irradiation, J. Alloys Compd., 697 (2017) 161–173.
  11. G. Liao, D. Zhu, J. Zheng, J. Yin, B. Lan, L. Li, Efficient mineralization of bisphenol A by photocatalytic ozonation with TiO2-graphene hybrid, J. Taiwan Inst. Chem. Eng., 67 (2016) 300–305.
  12. W. Wu, G.Q. Shan, S.F. Wang, Environmentally relevant impacts of nano-TiO2 on abiotic degradation of bisphenol A under sunlight irradiation, Environ. Pollut., 216 (2016) 166–172.
  13. V.A. Tran, T.T. Truong, T.A.P. Phan, T.N. Nguyen, T.V. Huynh, A. Agresti, S. Pescetelli, T.K. Le, A.D. Carlo, T. Lund, S. Le, P.T. Nguyen, Application of nitrogen-doped TiO2 nano-tubes in dye-sensitized solar cells, Appl. Surf. Sci., 399 (2017) 515–522.
  14. Y. Lu, K. Zhao, Y.H. Zhao, S. Zhu, X. Yuan, M. Huo, Y. Zhang, Y. Qiu, Bi2WO6/TiO2/Pt nanojunction system: A UV-vis light responsive photocatalyst with high photocatalytic performance, Colloid. Surface. A, 481 (2015) 252–260.
  15. F. Duo, Y. Wang, C. Fan, X. Mao, X. Zhang, Y. Wang, J. Liu, Low temperature one-step synthesis of rutile TiO2/BiOCl composites with enhanced photocatalytic activity, Mater. Charact., 99 (2015) 8–16.
  16. D. Wu, H. Wang, C. Li, J. Xia, X. Song, W. Huang, Photocatalytic self-cleaning properties of cotton fabrics functionalized with p-BiOI/n-TiO2 heterojunction, Surf. Coat. Technol., 258 (2014) 672–676.
  17. S. Kumar, S. Sharma, S. Sood, A. Umar, S. Kansal, Bismuth sulphide (Bi2S3) nanotubes decorated TiO2 nanoparticles heterojunction assembly for enhanced solar light driven photocatalytic activity, Ceram. Int., 42 (2016) 17551–17557.
  18. J. Zhang, L. Huang, L. Yang, Z. Lu, X. Wang, G. Xu, E. Zhang, H. Wang, Z. Kong, J. Xi, Z. Ji, Controllable synthesis of Bi2WO6 (001)/TiO2 (001) heterostructure with enhanced photocatalytic activity, J. Alloys Compd., 676 (2016) 37–45.
  19. K. Wang, C. Shao, X. Li, X. Zhang, N. Lu, F. Miao, Y. Liu, Hierarchical heterostructures of p-type BiOCl nanosheets on electrospun n-type TiO2 nanofibers with enhanced photocatalytic activity, Catal. Commun., 67 (2015) 6–10.
  20. G.Q. Zhang, S. Ji, Y. Zhang, Y. Wei, Facile synthesis of p-n heterojunction of phosphorus doped TiO2, and BiOI with enhanced visible-light photocatalytic activity, Solid State Commun., 259 (2017) 34–39.
  21. S. Boumaza, B. Bellal, A. Boudjemaa, M. Trari, Photodegradation of orange G by the hetero-junction x% Bi2S3/TiO2, under solar light, Sol. Energy, 139 (2016) 444–451.
  22. X.D. Zhu, F. Zhang, M.J. Wang, X. Gao, Y. Luo, J. Xue, Y. Zhang, J. Ding, S. Sun, J. Bao, C. Gao, A shuriken-shaped m-BiVO4/{001}-TiO2 heterojunction: synthesis, structure and enhanced visible light photocatalytic activity, Appl. Catal., A, 521 (2016) 42–49.
  23. S. Sood, S.K. Mehta, A.S.K. Sinha, S.K. Kansai, Bi2O3/TiO2 heterostructures: synthesis, characterization and their application in solar light mediated photocatalysed degradation of an antibiotic, ofloxacin, Chem. Eng. J., 290 (2016) 45–52.
  24. E. Grabowska, M. Marchelek, T. Klimczuk, G. Trykowski, A. Zaleska-Medynska, Noble metal modified TiO2, microspheres: surface properties and photocatalytic activity under UV-vis and visible light, J. Mol. Catal. A: Chem., 423 (2016) 191–206.
  25. Y. Hu, Y. Cao, P. Wang, D. Li, W. Chen, Y. He, X. Fu, Y. Shao, Y. Zheng, A new perspective for effect of Bi on the photocatalytic activity of Bi-doped TiO2, Appl. Catal., B, 125 (2012) 294–303.
  26. P.S. Yap, T.T. Lim, M. Lim, M. Srinivasan, Synthesis and characterization of nitrogen-doped TiO2/AC composite for the adsorption–photocatalytic degradation of aqueous bisphenol-A using solar light, Catal. Today, 151 (2010) 8–13.
  27. N. Lu, Y. Lu, F. Liu, K. Zhao, X. Yuan, Y. Zhao, Y. Li, H. Qin, J. Zhu, H3PW12O40/TiO2 catalyst-induced photodegradation of bisphenol A (BPA): kinetics, toxicity and degradation pathways, Chemosphere, 91 (2013) 1266–1272.
  28. B.F. GAO, P.S. Yap, T.M. Lim, T. Lim, Adsorption-photocatalytic degradation of Acid Red 88 by supported TiO2: effect of activated carbon support and aqueous anions, Chem. Eng. J., 171 (2011) 1098–1107.
  29. L. Luo, Y. Yang, M. Xiao, L. Bian, B. Yuan, Y. Liu, F. Jiang, X. Pan, A novel biotemplated synthesis of TiO2/wood charcoal composites for synergistic removal of bisphenol A by adsorption and photocatalytic degradation, Chem. Eng. J., 262 (2015) 1275–1283.
  30. L. Luo, J. Li, J. Dai, L. Xia, C. J. Barrow, H. Wang, J. Jegatheesan, M. Yang, Bisphenol A removal on TiO2-MoS2-reduced graphene oxide composite by adsorption and photocatalysis, Process Saf. Environ., 112 (2017) 274–279.
  31. L.F. Chiang, R. Doong, Cu-TiO2 nanorods with enhanced ultraviolet- and visible-light photoactivity for bisphenol A degradation, J. Hazard. Mater, 277 (2014) 84–92.
  32. X. Wang, T.T. Lim, Effect of hexamethylenetetramine on the visible-light photocatalytic activity of C-N codoped TiO2 for bisphenol A degradation: evaluation of photocatalytic mechanism and solution toxicity, Appl. Catal., A, 399 (2011) 233–241.
  33. M.E. Taheri, A. Petala, Z. Frontistis, D. Mantzavinos, D.I. Kondarides, Fast photocatalytic degradation of bisphenol A by Ag3PO4/TiO2 composites under solar radiation, Catal. Today, 280 (2017) 99–107.
  34. G. Bao, H. Zhao, J. Chen, W. Deng, B. Jung, A. Abdel- Wahab, B. Batchelor, Y. Li, FeOOH and Fe2O3 co-grafted TiO2 photocatalysts for bisphenol A degradation in water, Catal. Commun., 97 (2017) 125–129.
  35. E.B. Simsek, B. Kilic, M. Asgin, A. Akan, Graphene oxide heterojunction TiO2-ZnO catalysts with outstanding photocatalytic performance for bisphenol-A, ibuprofen and flurbiprofen, J. Ind. Eng. Chem., 59 (2018) 115–126.
  36. L. Luo, Y. Yang, A. Zhang, M. Wang, Y. Liu, L. Bian, F. Jiang, X. Pan, Hydrothermal synthesis of fluorinated anatase TiO2/reduced graphene oxide nanocomposites and their photocatalytic degradation of bisphenol A, Appl. Surf. Sci., 353 (2015) 469–479.
  37. W.H.M. Abdelraheem, M.K. Patil, M.N. Nadagouda, Hydrothermal synthesis of photoactive nitrogen- and boron-codoped TiO2 nanoparticles for the treatment of bisphenol A in wastewater: synthesis, photocatalytic activity, degradation byproducts and reaction pathways, Appl. Catal., B, 241 (2019) 598–611.
  38. X. Zhao, P. Du, Z. Cai, T. Wang, J. Fu, W. Liu, Photocatalysis of bisphenol A by an easy-settling titania/titanate composite: effects of water chemistry factors, degradation pathway and theoretical calculation, Environ. Pollut., 232 (2018) 580–590.
  39. L. Xu, L. Yang, E.M.J. Johansson, Y. Wang, P. Jin, Photocatalytic activity and mechanism of bisphenol a removal over TiO2-x/rGO nanocomposite driven by visible light, Chem. Eng. J., 350 (2018) 1043–1055.
  40. T.B. Nguyen, N.P. Huang, R. Doong, Photocatalytic degradation of bisphenol A over a ZnFe2O4/TiO2 nanocomposite under visible light, Sci. Total Environ., 646 (2019) 745–756.
  41. M.P. Blanco-Vega, J.L. Guzman-Mar, M. Villanueva, L. Maya-Trevino, L.L. Garza-Tovar, A. Hernandez-Ramirez, L. Hinojosa-Reyes, Photocatalytic elimination of bisphenol A under visible light using Ni-doped TiO2 synthesized by microwave assisted sol-gel method, Mater. Sci. Semicond. Process., 71 (2017) 275–282.
  42. P.S. Yap, Y.L. Cheah, M. Srinivasan, T. Lim, Bimodal N-doped P25-TiO2/AC composite: preparation, characterization, physical stability, and synergistic adsorptive-solar photocatalytic removal of sulfamethazine, Appl. Catal., A, 427–428 (2012) 125–136.
  43. Y. Liu, F. Xin, F.M. Wang, S. Luo, X. Yin, Synthesis, characterization, and activities of visible light-driven Bi2O3-TiO2 composite photocatalysts, J. Alloys Compd., 498 (2010) 179–184.
  44. X. Wu, W. Qin, W. He, Thin bismuth oxide films prepared through the sol-gel method as photocatalyst, J. Mol. Catal. A: Chem., 261 (2007) 167–171.
  45. V.L. Chandraboss, J. Kamalakkannan, S. Senthilvelan, Synthesis of activated charcoal supported Bi-doped TiO2 nanocomposite under solar light irradiation for enhanced photocatalytic activity, Appl. Surf. Sci., 387 (2016) 944–956.
  46. K.S.W. Sing, Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984), Pure Appl. Chem., 57 (1985) 603–619.
  47. K. Li, C. Dong, Y. Zhang, H. Wei, F. Zhao, Q. Wang, Ag–AgBr/CaWO4, composite microsphere as an efficient photocatalyst for degradation of Acid Red 18 under visible light irradiation: affecting factors, kinetics and mechanism, J. Mol. Catal. A: Chem., 394 (2014) 105–113.
  48. U. Alam, M. Fleisch, I. Kretschmer, D. Bahnemann, M. Muneer, One-step hydrothermal synthesis of Bi-TiO2 nanotube/graphene composites: an efficient photocatalyst for spectacular degradation of organic pollutants under visible light irradiation, Appl. Catal., B, 218 (2017) 758–769.
  49. U. Alam, A. Khan, W. Raza, A. Khan, D. Bahnemann, M. Muneer, Highly efficient Y and V co-doped ZnO photocatalyst with enhanced dye sensitized visible light photocatalytic activity, Catal. Today, 284 (2017) 169–178.
  50. D.P. Subagio, M. Srinivasan, M. Lim, T. Lim, Photocatalytic degradation of bisphenol-A by nitrogen-doped TiO2 hollow sphere in a vis- LED photoreactor, Appl. Catal., B, 95 (2010) 414–422.
  51. C.S. Guo, M. Ge, L. Liu, G. Gao, Y. Feng, Y. Wang, Directed synthesis of mesoporous TiO2 microspheres: catalysts and their photocatalysis for bisphenol a degradation, Environ. Sci. Technol., 44 (2010) 419–425.