References

  1. J. Shen, Y. Hu, M. Shi, N. Li, H. Ma, M. Ye, One step synthesis of graphene oxide−magnetic nanoparticle composite, J. Phys. Chem., 114 (2010) 1498–1503.
  2. A.K. Geim, K.S. Novoselov, The rise of graphene, Nat. Mater., 6 (2007) 183–191.
  3. V. Singh, D. Joung, L. Zhai, S. Das, S. Khondaker, S. Seal, Graphene based materials: past, present and future, Mater. Sci., 56 (8) (2011) 1178–1271.
  4. F. Tavakoli, M. Salavati Niasari, A facile synthesis of CuI-graphene nanocomposite by glucose as a green capping agent and reductant, J. Ind. Eng. Chem., 20 (2014) 3170–3174.
  5. M. Salavati Niasari, F. Tavakoli, Pb(OH)I-graphene composite: synthesis and characterization, J. Ind. Eng. Chem., 21 (2015) 1208–1213.
  6. G. Shiravand, A. Badiei, G. Mohammadi Ziarani, M. Jafarabadi, M. Hamzehloo, Photocatalytic synthesis of phenol by direct hydroxylation of benzene by a modified nanoporous silica (LUS-1) under sunlight, Chin. J. Catal., 33 (2012) 1347–1353.
  7. H. Eskandarloo, A. Badiei, M.A. Behnajadi, G.M. Ziarani, Ultrasonic-assisted degradation of phenazopyridine with a combination of Sm-doped ZnO nanoparticles and inorganic oxidants, Ultrason. Sonochem., 28 (2016) 169–177.
  8. H. Eskandarloo, A. Badiei, M.A. Behnajadi, A. Tavakoli, G.M. Ziarani, Ultrasonic-assisted synthesis of Ce doped cubichexagonal ZnTiO3 with highly efficient sonocatalytic activity, Ultrason. Sonochem., 29 (2016) 258–269.
  9. A. Fujishima, X. Zhang, D.A. Tryk, TiO2 photocatalysis and related surface phenomena, Surf Sci., 63 (2008) 515–582.
  10. K. Hashimoto, H. Irie, A. Fujishima, TiO2 photocatalysis: a historical overview and future prospects, Jpn. J. Appl. Phys., 44 (2005) 8269–8285.
  11. S. Malato, P. Fernández-Ibáñez, M.I. Maldonado, J. Blanco, W. Gernjak, Decontamination and disinfection of water by solar photocatalysis: recent overview and trends, Catal. Today, 147 (2009) 1–59.
  12. S. Escobedo, B. Serrano, A. Calzada, J. Moreira, H.D. Lasa, Hydrogen production using a platinum modified TiO2 photocatalyst and an organic scavenger, Kinetic modeling, Fuel, 181 (2016) 438–449.
  13. I.V. Lightcap, T.H. Kosel, P.V. Kamat, Anchoring semiconductor and metal nanoparticles on a two-dimensional catalyst mat. Storing and shuttling electrons with reduced graphene oxide, Nano Lett., 10 (2010) 577.
  14. H. Zhang, X.J. Lv, Y.M. Li, Y. Wang, J.H. Li, P25-graphene composite as a high performance photocatalyst, ACS Nano, 4 (2010) 380–386.
  15. Y.H. Zhang, Z.R. Tang, X.Z. Fu, Y.J. Xu, TiO2 graphene nanocomposites for gas-phase photocatalytic degradation of volatile aromatic pollutant: is TiO2-graphene truly different from other TiO2-carbon composite materials, ACS Nano, 4 (2010) 7303–7314.
  16. Y. Liang, H. Wang, H.S. Casalongue, Z. Chen, H. Dai, TiO2 nanocrystals grown on graphene as advanced photocatalytic hybrid materials, Nano Res., 3 (2010) 701–705.
  17. B. Cai, J. Wang, S. Gan, D. Han, Z. Wu, L. Niu, A distinctive red Ag/AgCl photocatalyst with efficient photocatalytic oxidative and reductive activities, J. Mater. Chem. A., 2 (2014) 5280–5286.
  18. Q. Wang, M. Chen, N. Zhu, X. Shi, H. Jin, Y. Zhang, Y. Cong, Preparation of AgI sensitized amorphous TiO2 as novel highperformance photocatalyst for environmental applications, J. Colloid Interface Sci., 448 (2015) 407–416.
  19. X.Y. Zhang, H.P. Li, X.L. Cui, Y.H. Lin, Graphene-TiO2 nanocomposites: synthesis, characterization and application in hydrogen evolution from water photocatalytic splitting, J. Mater. Chem., 20 (2010) 2801–2806.
  20. F. Tavakoli, M. Salavati-Niasari, F. Mohandes, Sonochemical synthesis and characterization of lead iodide hydroxide micro/nanostructures, Ultrason. Sonochem., 21 (2014) 234–241.
  21. F. Mohandes, M. Salavati-Niasari, Sonochemical synthesis of silver vanadium oxide micro/nanorods: solvent and surfactant effects, Ultrason. Sonochem., 20 (2013) 354–365.
  22. X. Lin, J. Xing, W. Wang, Z. Shan, F. Xu, F. Huang, Photocatalytic activities of heterojunction semiconductors Bi2O3/BaTiO3: a strategy for the design of efficient combined photocatalysts, J. Phys. Chem. C., 111 (2007) 18288–18293.
  23. B. Neppolian, A. Bruno, C.L. Bianchi, M. Ashokkumar, Graphene oxide based Pt–TiO2 photocatalyst: ultrasound assisted synthesis, characterization and catalytic efficiency, Ultrason. Sonochem., 19 (2012) 9–15.
  24. H. Eskandarloo, A. Badiei, M.A. Behnajadi, G. Mohammadi Ziarani, Ultrasonic-assisted sol–gel synthesis of samarium, cerium co-doped TiO2 nanoparticles with enhanced sonocatalytic efficiency, Ultrason. Sonochem., 26 (2015) 281–292.
  25. H. Eskandarloo, A. Badiei, A.R. Tavakoli, M.A. Behnajady, G. Mohammadi Ziarani, Simple and safe educational experiments for demonstration of environmental application of heterogeneous photocatalysis process using the example of natural fruit juice dye degradation, J. Mater. Educ., 36 (2014) 111–116.
  26. H. Eskandarloo, A. Badiei, C. Haug, Enhanced photocatalytic degradation of an azo textile dye by using TiO2/NiO coupled nanoparticles: optimization of synthesis and operational key factors, Mater. Sci. Semicond. Process., 27 (2014) 240–253.
  27. Q. Huang, S. Tian, D. Zeng, X. Wang, W. Song, Y. Li, W. Xiao, C. Xie, Enhanced photocatalytic activity of chemically bonded TiO2/graphene composites based on the effective interfacial charge transfer through the C–Ti bond, ACS Catal., 3 (2013) 1477–1485.
  28. L. Chen, D. Jiang, T. He, Z. Wu, M. Chen, In-situ ion exchange synthesis of hierarchical AgI/BiOI microsphere photocatalyst with enhanced photocatalytic properties, Cryst. Eng. Commun., 15 (2013) 7556–7563.
  29. Y. Zhang, Z.R. Tang, X. Fu, Y.J. Xu, TiO2-graphene nanocomposites for gas-phase photocatalytic degradation of volatile aromatic pollutant: is TiO2-graphene truly different from other TiO2-carbon composite materials?, ACS Nano, 4 (2010) 7303–7314.
  30. S.D. Perera, R.G. Mariano, K. Vu, N. Nour, O. Seitz, Y. Chabal, K.J. Balkus, Hydrothermal synthesis of graphene-TiO2 nanotube composites with enhanced photocatalytic activity, ACS Catal., 2 (2012) 949–956.
  31. Z. Li, M. Qi, C. Tu, W. Wang, J. Chen, A. JunWang, Highly efficient removal of chlorotetracycline from aqueous solution using graphene oxide/TiO2 composite: properties and mechanism, Appl. Surf. Sci., 425 (2017) 765–775.
  32. K. Lv, S. Fang, L. Si, Y. Xia, W. Ho, M. Li, Fabrication of TiO2 nanorod assembly grafted rGO (rGO@TiO2-NR) hybridized flake-like photocatalyst, Appl. Surf. Sci., 391 (2017) 218–227.
  33. Q. Xiang, J. Yu, M. Jaroniec, Enhanced photocatalytic H2-production activity of graphene-modified titania nanosheets, Nanoscale, 3 (2011) 3670–3678.
  34. Q. Xiang, J. Yu, M. Jaroniec, Graphene-based semiconductor photocatalysts, Chem. Soc. Rev., 41 (2012) 782–796.
  35. M. Sabet, M. Salavati-Niasari, Deposition of lead sulfide nanostructure films on TiO2 surface via different chemical methods due to improving dye-sensitized solar cells efficiency, Electrochim. Acta, 169 (2015) 168–179.
  36. F. Sangsefidi, M. Sabet, M. Salavati-Niasari, Synthesis and characterization of ceria nanostructures with different morphologies via a simple thermal decompose method with different cerium complexes and investigation the photocatalytic activity, J. Mater. Sci. - Mater. Electron., 27 (2016) 8793–8801.