References

  1. M. Kummu, J. Guillaume, H. De Moel, S. Eisner, M. Flörke, M. Porkka, S. Siebert, T. Veldkamp, P. Ward, The world’s road to water scarcity: shortage and stress in the 20th century and pathways towards sustainability, Sci. Rep., 6 (2016) 38495.
  2. D. Fan, Y. Zhang, S. Qin, B. Wu, Relationships between Artemisia ordosica communities and environmental factors following sand-dune stabilization in the Mu Us desert, northwest China, J. Forest Res., 28 (2017) 115–124.
  3. G. Yang, L. Song, X. Lu, N. Wang, Y. Li, Effect of the exposure to suspended solids on the enzymatic activity in the bivalve Sinonovacula constricta, Aquac. Fish., 2 (2017) 10–17.
  4. Y. Jin, Z. Lan, G. Zhu, W. Lu, Acute salinity and temperature challenges during early development of zebrafish: Differential gene expression of PTHs, PTHrPs and their receptors, Aquac. Fish., 2 (2017) 49–58.
  5. B. Kim, R. Kwak, H.J. Kwon, V.S. Pham, M. Kim, B. Al-Anzi, G. Lim, J. Han, Purification of high salinity brine by multi-stage ion concentration polarization desalination, Sci. Rep., 6 (2016) 31850.
  6. G. Luo, W. Li, H. Tan, X. Chen, Comparing salinities of 0, 10 and 20 in biofloc genetically improved farmed tilapia (Oreochromis niloticus) production systems, Aquac. Fish., 2 (2017) 220–226.
  7. K. Smith, S. Liu, Energy for conventional water supply and wastewater treatment in urban china: a review, Global Challenges, 1 (2017) 1600016.
  8. M. Shatat, S.B. Riffat, Water desalination technologies utilizing conventional and renewable energy sources, Int. J. Low-Carbon Technol., 9 (2012) 1–19.
  9. D. Ucar, Y. Zhang, I. Angelidaki, An overview of electron acceptors in microbial fuel cells, Front. Microbiol., 8 (2017) 643.
  10. C. Santoro, F.B. Abad, A. Serov, M. Kodali, K.J. Howe, F. Soavi, P. Atanassov, Supercapacitive microbial desalination cells: new class of power generating devices for reduction of salinity content, Appl. Energy., 208 (2017) 25–36.
  11. C.E. Pantoja, Y.N. Nariyoshi, M.M. Seckler, Membrane distillation crystallization applied to brine desalination: a hierarchical design procedure, Ind. Eng. Chem. Res., 54 (2015) 2776–2793.
  12. S. Porada, R. Zhao, A. Van Der Wal, V. Presser, P.M. Biesheuvel, Review on the science and technology of water desalination by capacitive deionization, Prog. Mater. Sci., 58 (2013) 1388–1442.
  13. H. Jingyu, D. Ewusi-Mensah, E. Norgbey, Microbial desalination cells technology: a review of the factors affecting the process, performance and efficiency, Desal. Water Treat., 87 (2017) 140–159.
  14. S. Sevda, H. Yuan, Z. He, I.M. Abu-Reesh, Microbial desalination cells as a versatile technology: functions, optimization and prospective, Desalination., 371 (2015) 9–17.
  15. A.K. Singh, V.K. Shahi, Electro‐membrane processes, Encyclopedia of Membrane Science and Technology, John Wiley & Sons, Inc., 2013, pp. 1–59.
  16. S. Sevda, I.M. Abu-Reesh, Effect of the organic load on salt removal efficiency of microbial desalination cell, Desal. Water Treat., 108 (2018) 112–118.
  17. S. Sevda, I.M. Abu-Reesh, H. Yuan, Z. He, Bioelectricity generation from treatment of petroleum refinery wastewater with simultaneous seawater desalination in microbial desalination cells, Energy Convers. Manage., 141 (2017) 101–107.
  18. S. Sevda, I.M. Abu-Reesh, Improved petroleum refinery wastewater treatment and seawater desalination performance by combining osmotic microbial fuel cell and up-flow microbial desalination cell, Environ. Technol., 40 (2017) 1-22.
  19. S. Sevda, I.M. Abu-Reesh, Improved salt removal and power generation in a cascade of two hydraulically connected up-flow microbial desalination cells, J. Environ. Sci. Health A Tox. Hazard. Subst. Environ. Eng., 53 (2018) 326–337.
  20. H. Zimnitskaya, J. Von Geldern, Is the Caspian Sea a sea; and why does it matter?, J. Eurasian Stud., 2 (2011) 1–14.
  21. N.P. Nezlin, Patterns of seasonal and interannual variability of remotely sensed chlorophyll, in the Caspian Sea environment, Springer, 2005, 143–157.
  22. S. Jamshidi, M. Yousefi, Seasonal variations of seawater properties in the southwestern coastal waters of the caspian sea, Int. J. Mar. Sci. Eng., 3 (2013) 113–124.
  23. A.G. Ebadi, H. Hisoriev, The prevalence of heavy metals in Cladophora glomerata L. from Farahabad Region of Caspian Sea–Iran, Toxicol. Environ. Chem., 99 (2017) 883–891.
  24. C.M. Werner, B.E. Logan, P.E. Saikaly, G.L. Amy, Wastewater treatment, energy recovery and desalination using a forward osmosis membrane in an air-cathode microbial osmotic fuel cell, J. Membr. Sci. 428 (2013) 116–122.
  25. X. Cao, X. Huang, P. Liang, K. Xiao, Y. Zhou, X. Zhang, B.E. Logan, A new method for water desalination using microbial desalination cells, Environ. Sci. Technol., 43 (2009) 7148–7152.
  26. D.R. Lovley, E.J. Phillips, Novel mode of microbial energy metabolism: organic carbon oxidation coupled to dissimilatory reduction of iron or manganese, Appl. Environ. Microbiol., 54 (1988) 1472–1480.
  27. E. Mathioulakis, V. Belessiotis, E. Delyannis, Desalination by using alternative energy: review and state-of-the-art, Desalination, 203 (2007) 346–365.
  28. A. Eaton, L.S. Clesceri, E.W. Rice, A.E. Greenberg, M. Franson, APHA: standard methods for the examination of water and wastewater, Centennial Edition., APHA, AWWA, WEF, Washington, DC, 2005.
  29. A. Morel, K. Zuo, X. Xia, J. Wei, X. Luo, P. Liang, X. Huang, Microbial desalination cells packed with ion-exchange resin to enhance water desalination rate, Bioresour. Technol., 118 (2012) 43–48.
  30. Q. Wen, H. Zhang, Z. Chen, Y. Li, J. Nan, Y. Feng, Using bacterial catalyst in the cathode of microbial desalination cell to improve wastewater treatment and desalination, Bioresour. Technol., 125 (2012) 108–113.
  31. S. Roy, A. Schievano, D. Pant, Electro-stimulated microbial factory for value added product synthesis, Bioresour. Technol., 213 (2016) 129–139.
  32. P.S. Goh, A.F. Ismail, N. Hilal, Nano-enabled membranes technology: sustainable and revolutionary solutions for membrane desalination? Desalination, 380 (2016) 100–104.
  33. Y. Kim, B.E. Logan, Microbial desalination cells for energy production and desalination, Desalination, 308 (2013) 122–130.
  34. V. Gude, B. Kokabian, V. Gadhamshetty, Beneficial bioelectrochemical systems for energy, water, and biomass production, J. Microb. Biochem. Technol., 6 (2013) 2.
  35. N.A. Shehab, B.E. Logan, G.L. Amy, P.E. Saikaly, Microbial electrodeionization cell stack for sustainable desalination, wastewater treatment and energy recovery, Proc. Water Environ. Fed., 2013 (2013) 222–227.
  36. K. Zuo, J. Chang, F. Liu, X. Zhang, P. Liang, X. Huang, Enhanced organics removal and partial desalination of high strength industrial wastewater with a multi-stage microbial desalination cell, Desalination, 423 (2017) 104–110.
  37. Q. Ping, C. Zhang, X. Chen, B. Zhang, Z. Huang, Z. He, Mathematical model of dynamic behavior of microbial desalination cells for simultaneous wastewater treatment and water desalination, Environ. Sci. Technol., 48 (2014) 13010–13019.
  38. Q. Ping, Advancing Microbial Desalination Cell towards Practical Applications, Doctoral Dissertations, Faculty of the Virginia Polytechnic Institute and State University, 2016.
  39. X. Chen, P. Liang, X. Zhang, X. Huang, Bioelectrochemical systems-driven directional ion transport enables low-energy water desalination, pollutant removal, and resource recovery, Bioresour. Technol., 215 (2016) 274–284.
  40. Y. Kim, B.E. Logan, Series assembly of microbial desalination cells containing stacked electrodialysis cells for partial or complete seawater desalination, Environ. Sci. Technol., 45 (2011) 5840–5845.
  41. K.S. Jacobson, D.M. Drew, Z. He, Use of a liter-scale microbial desalination cell as a platform to study bioelectrochemical desalination with salt solution or artificial seawater, Environ. Sci. Technol., 45 (2011) 4652–4657.
  42. K.S. Jacobson, D.M. Drew, Z. He, Efficient salt removal in a continuously operated upflow microbial desalination cell with an air cathode, Bioresour. Technol., 102 (2011) 376–380.
  43. K. Zuo, L. Yuan, J. Wei, P. Liang, X. Huang, Competitive migration behaviors of multiple ions and their impacts on ionexchange resin packed microbial desalination cell, Bioresour. Technol., 146 (2013) 637–642.
  44. Q. Ping, Z. He, Effects of inter-membrane distance and hydraulic retention time on the desalination performance of microbial desalination cells, Desal. Water Treat., 52 (2014) 1324–1331.
  45. M. Mehanna, T. Saito, J. Yan, M. Hickner, X. Cao, X. Huang, B.E. Logan, Using microbial desalination cells to reduce water salinity prior to reverse osmosis, Energy Environ. Sci., 3 (2010) 1114–1120.
  46. M. Mehanna, P.D. Kiely, D.F. Call, B.E. Logan, Microbial electrodialysis cell for simultaneous water desalination and hydrogen gas production, Environ. Sci. Technol., 44 (2010) 9578–9583.
  47. H. Luo, P. Xu, P.E. Jenkins, Z. Ren, Ionic composition and transport mechanisms in microbial desalination cells, J. Membr. Sci., 409 (2012) 16–23.
  48. Y. Qu, Y. Feng, X. Wang, J. Liu, J. Lv, W. He, B.E. Logan, Simultaneous water desalination and electricity generation in a microbial desalination cell with electrolyte recirculation for pH control, Bioresour. Technol., 106 (2012) 89–94.
  49. H. Luo, P.E. Jenkins, Z. Ren, Concurrent desalination and hydrogen generation using microbial electrolysis and desalination cells, Environ. Sci. Technol., 45 (2010) 340–344.
  50. M. Rahimnejad, A. Adhami, S. Darvari, A. Zirepour, S.-E. Oh, Microbial fuel cell as new technology for bioelectricity generation: a review, Alexandria Eng. J., 54 (2015) 745–756.