References

  1. A. Moral, M.D. Sicilia, S. Rubio, Determination of benzimidazolic fungicides in fruits and vegetables by supramolecular solvent-based microextraction/liquid chromatography/fluorescence detection, Anal. Chim. Acta, 650 (2009) 207–213.
  2. H. Berrada, G. Font, J.C. Moltó, Determination of urea pesticide residues in vegetable, soil, and water samples, Crit. Rev. Anal. Chem., 33 (2003) 19–41.
  3. O. Golge, B. Kabak, Evaluation of QuEChERS sample preparation and liquid chromatography–triple-quadrupole mass spectrometry method for the determination of 109 pesticide residues in tomatoes, Food Chem., 176 (2015) 319–332.
  4. A. Kotrikla, G. Gatidou, T.D. Lekkas, Monitoring of triazine and phenylurea herbicides in the surface waters of Greece, J. Environ. Sci. Health., Part B, 41 (2006)135–144.
  5. G.L. Scheel, C.R. Tarley, Feasibility of supramolecular solvent-based microextraction for simultaneous preconcentration of herbicides from natural waters with posterior determination by HPLC-DAD, Microchem. J., 133 (2017) 650–657.
  6. A. Can, I. Yildiz, G. Guvendik, The determination of toxicities of sulphonylurea and phenylurea herbicides with quantitative structure–toxicity relationship (QSTR) studies, Environ. Toxicol. Pharmacol., 35 (2013) 369–379.
  7. M.B. Pereira, M.G. Castro, S.M. Lorenzo, P.L. Mahía, D.P. Rodríguez, E. Fernández, Comparison of pressurized liquid extraction and microwave assisted extraction for the determination of organochlorine pesticides in vegetables, Talanta, 71 (2007) 1345–1351.
  8. S.B. Singh, G.D. Foster, S.U. Khan, Determination of thiophanate methyl and carbendazim residues in vegetable samples using microwave-assisted extraction, J. Chromatogr. A, 1148 (2007) 152–157.
  9. F.J. Lara, A.M. Campaña, F. Barrero, J.M. Sendra, In-line solid-phase extraction preconcentration in capillary electrophoresis-tandem mass spectrometry for the multiresidue detection of quinolones in meat by pressurized liquid extraction, Electrophoresis, 29 (2008) 2117–2125.
  10. H. Oka, Y. Ito, H. Matsumoto, Chromatographic analysis of tetracycline antibiotics in foods, J. Chromatogr. A, 882 (2000) 109–133.
  11. G. Shen, H.K. Lee, Hollow fiber-protected liquid-phase microextraction of triazine herbicides, Anal. Chem., 74 (2002) 648–654.
  12. P.L. Buldini, L. Ricci, J.L. Sharma, Recent applications of sample preparation techniques in food analysis, J. Chromatogr. A, 975 (2002) 47–70.
  13. M.G. López, P. Canosa, I. Rodríguez, Trends and recent applications of matrix solid-phase dispersion, Anal. Bioanal. Chem., 391 (2008) 963–974.
  14. A. Gómez, S. Rubio, D.P. Bendito, Potential of supramolecular solvents for the extraction of contaminants in liquid foods, J. Chromatogr. A, 1216 (2009) 530–539.
  15. R.C. Martınez, E.R. Gonzalo, B.M. Cordero, J.P. Pavón, C.G. Pinto, E.F. Laespada, Surfactant cloud point extraction and preconcentration of organic compounds prior to chromatography and capillary electrophoresis, J. Chromatogr. A, 902 (2000) 251–265.
  16. E.M. Costi, M.D. Sicilia, S. Rubio, Supramolecular solvents in solid sample microextractions: Application to the determination of residues of oxolinic acid and flumequine in fish and shellfish, J. Chromatogr. A, 1217 (2010) 1447–1454.
  17. A. Moral, C. Caballo, M.D. Sicilia, S. Rubio, Highly efficient microextraction of chlorophenoxy acid herbicides in natural waters using a decanoic acid-based nanostructured solvent prior to their quantitation by liquid chromatography–mass spectrometry, Anal. Chim. Acta, 709 (2012) 59–65.
  18. F. Aydin, E. Yilmaz, M. Soylak, Supramolecular solvent-based microextraction method for cobalt traces in food samples with optimization Plackett–Burman and central composite experimental design, RSC Adv., 5 (2015) 94879–94886.
  19. N. Özkantar, M. Soylak, M. Tüzen, Spectrophotometric detection of rhodamine B in tap water, lipstick, rouge, and nail polish samples after supramolecular solvent microextraction, Turk. J. Chem., 41 (2017) 987–994.
  20. A.A. Gouda, M.S. Elmasry, H. Hashem, H.M. Sayed, Ecofriendly environmental trace analysis of thorium using a new supramolecular solvent-based liquid-liquid microextraction combined with spectrophotometry, Microchem. J., 142 (2018) 102–107.
  21. M. Peyrovi, M. Hadjmohammadi, Alkanol-based supramolecular solvent microextraction of organophosphorus pesticides and their determination using high-performance liquid chromatography, J. Iran. Chem. Soc., 14 (2017) 995–1004.
  22. E. Yilmaz, M. Soylak, Development a novel supramolecular solvent microextraction procedure for copper in environmental samples and its determination by microsampling flame atomic absorption spectrometry, Talanta, 126 (2014) 191–195.
  23. C. Caballo, M. Sicilia, S. Rubio, Enantioselective determination of representative profens in wastewater by a single-step sample treatment and chiral liquid chromatography–tandem mass spectrometry, Talanta, 134 (2015) 325–332.
  24. S. Magiera, A. Nieścior, I. Baranowska, Quick supramolecular solvent-based microextraction combined with ultrahigh performance liquid chromatography for the analysis of isoflavones in soy foods, Food Anal. Methods, 9 (2016) 1770–1780.
  25. A. Gómez, M.D. Sicilia, S. Rubio, Supramolecular solvents in the extraction of organic compounds. A review, Anal. Chim. Acta, 677 (2010) 108–130.
  26. H. Qin, X. Qiu, J. Zhao, M. Liu, Y. Yang, Supramolecular solvent-based vortex-mixed microextraction: Determination of glucocorticoids in water samples, J. Chromatogr. A, 1311 (2013) 11–20.
  27. F. Rezaei, Y. Yamini, M. Moradi, B. Daraei, Supramolecular solvent-based hollow fiber liquid phase microextraction of benzodiazepines, Anal. Chim. Acta, 804 (2013) 135–142.
  28. C. Caballo, E.M. Costi, M.D. Sicilia, S. Rubio, Determination of supplemental feeding needs for astaxanthin and canthaxanthin in salmonids by supramolecular solvent-based microextraction and liquid chromatography–UV/VIS spectroscopy, Food Chem., 134 (2012) 1244–1249.
  29. F.J. Jiménez, S. Rubio, D.P. Bendito, Supramolecular solvent-based microextraction of Sudan dyes in chilli-containing foodstuffs prior to their liquid chromatography-photodiode array determination, Food Chem., 121 (2010) 763–769.
  30. S.G. Fonseca, A. Gómez, S. Rubio, D.P. Bendito, Supramolecular solvent-based microextraction of ochratoxin A in raw wheat prior to liquid chromatography-fluorescence determination, J. Chromatogr. A, 1217 (2010) 2376–2382.
  31. K.N. Reddy, M.A. Locke, Molecular properties as descriptors of octanol-water partition coefficients of herbicides, Water Air Soil Pollut., 86 (1996) 389–405.
  32. K.V. Aken, L. Strekowski, L. Patiny, EcoScale, a semi-quantitative tool to select an organic preparation based on economical and ecological parameters, Beilstein J. Org. Chem., 2 (2006) 1–7.
  33. D. Wang, F.N. Mukome, D. Yan, H. Wang, K.M. Scow, S.J. Parikh, Phenylurea herbicide sorption to biochars and agricultural soil, J. Environ. Sci. Health., Part B, 50 (2015) 544–551.
  34. H.H. Lin, Y.H. Sung, S.D. Huang, Solid-phase microextraction coupled with high-performance liquid chromatography for the determination of phenylurea herbicides in aqueous samples, J. Chromatogr. A, 1012 (2003) 57–66.
  35. P. Paíga, S. Morais, M. Correia, C. Delerue-Matos, A. Alves, Determination of carbamate and urea pesticide residues in fresh vegetables using microwave-assisted extraction and liquid chromatography, Int. J. Environ. Anal. Chem., 89 (2009) 199–210.
  36. H. Berrada, G. Font, J. Molto, Indirect analysis of urea herbicides from environmental water using solid-phase microextraction, J. Chromatogr. A, 890 (2000) 303–312.
  37. G. Sagratini, J. Manes, D. Giardiná, P. Damiani, Y. Picó, Analysis of carbamate and phenylurea pesticide residues in fruit juices by solid-phase microextraction and liquid chromatography–mass spectrometry, J. Chromatogr. A, 1147 (2007) 135–143.
  38. C. Lesueur, M. Gartner, A. Mentler, M. Fuerhacker, Comparison of four extraction methods for the analysis of 24 pesticides in soil samples with gas chromatography–mass spectrometry and liquid chromatography–ion trap–mass spectrometry, Talanta, 75 (2008) 284–293.
  39. R. Dommarco, A. Santilio, L. Fornarelli, M. Rubbiani, Simultaneous quantitative determination of thirteen urea pesticides at sub-ppb levels on a Zorbax SB-C 18 column, J. Chromatogr. A, 825 (1998) 200–204.
  40. R.C. Martınez, E.R. Gonzalo, E.H. Hernández, J.H. Méndez, Simultaneous determination of phenyl-and sulfonylurea herbicides in water by solid-phase extraction and liquid chromatography with UV diode array or mass spectrometric detection, Anal. Chim. Acta, 517 (2004) 71–79.
  41. S. Cunha, J. Fernandes, Multipesticide residue analysis in maize combining acetonitrile-based extraction with dispersive liquid–liquid microextraction followed by gas chromatography–mass spectrometry, J. Chromatogr. A, 1218 (2011) 7748–7757.
  42. C. Molins, E.A. Hogendoorn, E. Dijkman, H.A. Heusinkveld, R.A. Baumann, Determination of linuron and related compounds in soil by microwave-assisted solvent extraction and reversed-phase liquid chromatography with UV detection, J. Chromatogr. A, 869 (2000) 487–496.
  43. F.G. Tamayo, J.L. Casillas, A.M. Esteban, Evaluation of new selective molecularly imprinted polymers prepared by precipitation polymerisation for the extraction of phenylurea herbicides, J. Chromatogr. A, 1069 (2005) 173–181.