References

  1. D.M. Whitacre, Reviews of Environmental Contamination and Toxicology, vol. 232, Springer, New York, 2014.
  2. C. Bourotte, R. Bertolo, M. Almodovar, R. Hirata, Natural occurrence of hexavalent chromium in a sedimentary aquifer in Urânia, State of São Paulo, Brazil, An. Acad. Braz. Sci., 81 (2009) 227–242.
  3. R.K. Gautam, S.K. Sharma, S. Mahiya, M.C. Chattopadhyaya, Chapter 1: Contamination of Heavy Metals in Aquatic Media: Transport, Toxicity and Technologies for Remediation, in Heavy Metals In Water: Presence, Removal and Safety, 2014, pp. 1–24.
  4. H-L. Huang, H-H. Huang, Y.J. Wei, Reduction of toxic Cr(VI)-humic acid in an ionic liquid, Spectrochim. Acta B, 133 (2017) 9–13.
  5. A. Zhitkovich, Chromium in drinking water: sources, metabolism, and cancer risks, Chem. Res. Toxicol., 24 (2011) 1617–1629.
  6. A.D. Dayan, A.J. Paine, Mechanisms of chromium toxicity, carcinogenicity and allergenicity: review of the literature from 1985 to 2000, Hum. Exp. Toxicol., 20 (2001) 439–451.
  7. A.S. Dharnaik, P.K. Ghosh, Hexavalent chromium [Cr(VI)] removal by the electrochemical ion-exchange process, Environ. Tech., 35 (2014) 2272–2279.
  8. A.A. Lewinsky, Hazardous Materials and Wastewater: Treatment, Removal and Analysis, New York : Nova Science Publishers, Inc., 2007.
  9. T. Ahmad, M. Danish, M. Rafatullah, A. Ghazali, O. Sulaiman, R. Hashim, M. Ibrahim, The use of date palm as a potential adsorbent for wastewater treatment: a review, Environ. Sci. Pollut. Res. 19 (2012) 1464–1484.
  10. H. Thatoi, S. Das, J. Mishra, B.P. Rath, N. Das, Bacterial chromate reductase, a potential enzyme for bioremediation of hexavalent chromium: a review, J. Environ. Manage., 146 (2014) 383–399.
  11. S. Hokkanen, E. Repo, M. Sillanpää, Removal of heavy metals from aqueous solutions by succinic anhydride modified mercerized nanocellulose, Chem. Eng. J., 223 (2013) 40–47.
  12. G.M. Nabil, N.M. El-Mallah, M.E. Mahmoud, Enhanced decolorization of reactive black 5 dye by active carbon sorbent-immobilized-cationic surfactant (AC-CS), Ind. Eng. Chem., 20 (2014) 994–1002.
  13. D. Kang, X. Yu, S. Tong, M. Ge, J. Zuo, C. Cao, W. Song, Performance and mechanism of Mg/Fe layered double hydroxides for fluoride and arsenate removal from aqueous solution, Chem. Eng. J., 228 (2013) 731–740.
  14. S. Miyata, Anion exchange properties of hydrotalcite-like compounds, Clays Clay Miner., 31 (1983) 305–311.
  15. F. Cavani, F. Trifirò, A. Vaccari, Hydrotalcite-type anionic clays: preparation, properties and applications, Catal. Today, 11(2) (1991) 173–301.
  16. P. Gu, S. Zhang, X. Li, X. Wang, T. Wen, R. Jehan, A. Alsaedi, T. Hayat, X. Wang, Recent advances in layered double hydroxide-based nanomaterials for the removal of radionuclides from aqueous solution, Environ. Pollut., 240 (2018) 493e505.
  17. S.M. Auerbach, K.A. Carrado, P.K. Dutta, Handbook of Layered Materials, New York, NY: Marcel Dekker, 2004, pp. 377.
  18. S. Radha, A. Navrotsky, Energetics of CO2 adsorption on Mg−Al layered double hHydroxides and related mixed metal oxides, J. Phys. Chem., 118 (2014) 29836−29844.
  19. M. Sajid, C. Basheer, Layered double hydroxides: Emerging sorbent materials for analytical extractions, Trends Anal. Chem., 75 (2016) 174–182.
  20. C. Lei, X. Zhu, B. Zhu, C. Jiang, Y. Le, J. Yu, Superb adsorption capacity of hierarchical calcined Ni/Mg/Al layered double hydroxides for Congo red and Cr(VI) ions, J. Hazard. Mater., 321 (2017) 801–811.
  21. L. Zhong, X. He, J. Qu, X. Li, Z. Lei, Q. Zhang, X. Liu, Precursor preparation for Ca-Al layered double hydroxide to remove hexavalent chromium coexisting with calcium and magnesium chlorides, J. Solid State Chem., 245 (2017) 200–206.
  22. A. Jaiswal, R. Mani, S. Banerjee, R.K. Gautam, M.C. Chattopadhyaya, Synthesis of novel nano-layered double hydroxide by urea hydrolysis method and their application in removal of chromium(VI) from aqueous solution: Kinetic, thermodynamic and equilibrium studies, J. Mol. Liq., 202 (2015) 52–61.
  23. L-g. Yan, K. Yang, R-r. Shan, H-q. Yu, B. Du, Calcined ZnAl and Fe3O4/ZnAl–layered double hydroxides for efficient removal of Cr(VI) from aqueous solution, RSC Adv., 5 (2015) 96495.
  24. B. Hu, W. Liu, W. Gao, J. Han, H. Liu, L.A. Lucia, Pseudo-Janus Zn/Al-based nanocomposites for Cr(VI) sorption/remediation and evolved photocatalytic functionality, Chem. Eng. J., 277 (2015) 150–158.
  25. G. Eshaq, A.M. Rabie, A.A. Bakr, A.H. Mady, A.E. ElMetwally, Cr(VI) adsorption from aqueous solutions onto Mg–Zn–Al LDH and its corresponding oxide, Desal. Water Treat., 57(43) (2016) 20377–20387
  26. W. Wang, J. Zhou, G. Achari, J. Yu, W. Cai, Cr(VI) removal from aqueous solutions by hydrothermal synthetic layered double hydroxides: Adsorption performance, coexisting anions and regeneration studies, Colloids Surf. A: Physicochem. Eng. Asp., 457 (2014) 33–40.
  27. M. Khitous, Z. Salem, D. Halliche, Effect of interlayer anions on chromium removal using Mg–Al layered double hydroxides: Kinetic, equilibrium and thermodynamic studies, Chinese J. Chem. Eng., 24 (2016) 433–445.
  28. X. Yuan, Y. Wang, J. Wang, C. Zhou, Q. Tang, X. Rao, Calcined graphene/MgAl-layered double hydroxides for enhanced Cr(VI) removal, Chem. Eng. J., 221 (2013) 204–213.
  29. Y. Zou, X. Wang, A. Khan, P. Wang, Y. Liu, A. Alsaedi, T. Hayat, X. Wang, Environmental remediation and application of nanoscale zero-valent iron and its composites for the removal of heavy metal ions: a review, Environ. Sci. Technol., 50 (2016) 7290–7304.
  30. J. Li, X. Wang, G. Zhao, C. Chen, Z. Chai, A. Alsaedi, T. Hayat, X. Wang, Metal–organic framework-based materials: superior adsorbents for the capture of toxic and radioactive metal ions, Chem. Soc. Rev., 47 (2018) 2322–2356.
  31. G. Zhao, X. Huang, Z. Tang, Q. Huang, F. Niu, X. Wang, Polymer-based nanocomposites for heavy metal ions removal from aqueous solution: a review, Polym. Chem., 9 (2018) 3562–3582.
  32. K.S. Abou-El-Sherbini, I.M.M. Kenawy, M.A.H. Hafez, H.R. Lotfy, Z.M. Abd Elbary, Synthesis of novel CO32–/Cl bearing 3(Mg+Zn)/(Al + Fe) layered double hydroxides for the removal of anionic hazards, JECE, 3 (2015) 2707–2721.
  33. J. Mendham, R.C. Denney, J.D. Barnes, M. Thomas, B. Sivasankar, Quantitative chemical analysis, 6th ed., Vogel’s textbook, Pearson Education Ltd., New Delhi, India, 2000, pp. 58, 311–335, 349, 651, 70, 340.
  34. Z. Marczenko, Separation and spectrophotometeric determination of elements, Ellis Horwood Limited, New York, 2nd ed., 1986, pp. 21–43,134.
  35. D.G. Evans, R.C.T. Slade, Layered double hydroxides, Struct. Bond., 119 (2006) 6.
  36. A. Elhalil, S. Qourzal, F.Z. Mahjoubi, R. Elmoubarki, M. Farnane, H. Tounsadi, M. Sadiqa, M. Abdennouri, N. Barka, Defluoridation of groundwater by calcined Mg/Al layered double hydroxide, Emerg. Contam., 2 (2016) 42–48.
  37. K.B. Rozov, U. Berner, D.A. Kulik, L.W. Diamond, Solubility and thermodynamic properties of carbonate-bearing hydrotalcite-pyroaurite solid solutions with a 3:1 Mg/(Al+Fe)mole ratio, Clays Clay Miner., 59 (2011) 215–232.
  38. J.T. Kloprogge (ed), The Application of Vibrational Spectroscopy to Clay Minerals and Layered Double Hydroxides, Clay Minerals Society, Aurora, 2005.
  39. K-H. Goh, T-T. Lim, Z. Dong, Application of layered double hydroxides for removal of oxyanions: A review, Water Res., 42 (2008) 1343–1368.
  40. N.Y. Mezenner, A. Bensmaili, Kinetics and thermodynamic study of phosphate sorption on iron hydroxide-eggshell waste, Chem. Eng. J., 147 (2009) 87–96.
  41. K.Y. Foo, B.H. Hameed, Insights into the modeling of adsorption isotherm systems, Chem. Eng. J., 156 (2010) 2–10.
  42. P.-P. Huang, C.-Y. Cao, F. Wei, Y.-B. Sun, W.-G. Song, MgAl layered double hydroxides with chloride and carbonate ions as interlayer anions for removal of arsenic and fluoride ions in water, RSC Adv., 5 (2015) 10412–10417.
  43. Y. Liu, Y.-J. Liu, Biosorption isotherms, kinetics and thermodynamics, Sep. Purif. Technol., 61 (2008) 229–242.
  44. J. Flores, E. Lima, M. Maubert, E. Aduna, J.L. Rivera, Clean-up of wastes from the textile industry using anionic clays, Clays Clay Min., 59 (2011) 240–249.
  45. X. Song, Y. Wu, Simultaneous sorption of chromium (VI) and phosphate by calcined Mg-Al-CO3-layered double hydroxides, Bull. Korean Chem. Soc., 35 (2014) 1817–1824.
  46. F. Zhang, N. Du, H. Li, S. Song, W. Hou, Sorbent effect on the sorption of Cr(VI) on a Mg6AlFe-layered double hydroxide and its calcined product in aqueous solutions, Colloid. Polym. Sci., 293 (2015) 1961–1969.
  47. J. Wang, P. Wang, H. Wang, J. Dong, W. Chen, X. Wang, S. Wang, T. Hayat, A. Alsaedi, X. Wang, Preparation of molybdenum disulfide coated Mg/Al layered double hydroxide composites for efficient removal of chromium(VI), ACS Sustain. Chem. Eng., 5 (2017) 7165–7174.
  48. C. Lei, X. Zhu, B. Zhu, C. Jiang, Y. Le, J. Yu, Superb adsorption capacity of hierarchical calcined Ni/Mg/Al layered double hydroxides for Congo red and Cr(VI) ions, J. Hazard. Mater., 321 (2017) 801–811.
  49. J. Wang, Y. Liang, Q. Jin, J. Hou, B. Liu, X. Li, W. Chen, T. Hayat, A. Ahmed, X. Wan, Simultaneous removal of graphene oxide and chromium(VI) on the rare earth doped titanium dioxide coated carbon sphere composites, ACS Sustain. Chem. Eng., 5 (2017) 5550–5561.
  50. T. Wen, J. Wang, S. Yu, Z. Chen, T. Hayat, X. Wang, Magnetic porous carbonaceous material produced from tea waste for efficient removal of As(V), Cr(VI), humic acid and dyes, ACS Sustain. Chem. Eng., 5 (2017) 4371–4380.
  51. Y. Liang, Y. Li, S. Zhang, H. Li, X. Mao, L. Zhou, W. Yang, Equilibrium, kinetics, and thermodynamics studies of Cr(VI) adsorption from aqueous solutions on organoclay using ionic liquid-type imidazolium surfactants, Desal. Water Treat., 100 (2017) 135–144.
  52. S. Zhang, Z. Wang, H. Chen, C. Kai, M. Jiang, Q. Wang, Z. Zhou, Polyethylenimine functionalized Fe3O4/steam-exploded rice straw composite as an efficient adsorbent for Cr(VI) removal, Appl. Surf. Sci., 440 (2018) 1277–1285.
  53. H. Chen, J. Dou, H. Xu, Removal of Cr(VI) ions by sewage sludge compost biomass from aqueous solutions: Reduction to Cr(III) and biosorption, Appl. Surf. Sci., 425 (2017) 728–735.
  54. M.H. Dehghani, A. Zarei, A. Mesdaghin, Adsorption of Cr(VI) ions from aqueous systems using thermally sodium organo-bentonite biopolymer composite (TSOBC): response surface methodology, isotherm, kinetic and thermodynamic studies, Desal. Water Treat., 85 (2017) 298–312.
  55. S. Lin, C. Lian, M. Xu, W. Zhang, L. Liu, K. Lin, Study on competitive adsorption mechanism among oxyacid-type heavy metals in co-existing system: Removal of aqueous As(V), Cr(III) and As(III) using magnetic iron oxide nanoparticles (MIONPs) as adsorbents, Appl. Surf. Sci., 422 (2017) 675–681.
  56. H. Lin, S. Han, Y. Dong, Y. He, The surface characteristics of hyperbranched polyamidemodified corncoband its adsorption property for Cr(VI), Appl. Surf. Sci., 412 (2017) 152–159.
  57. C. Liu, R-N. Jin, X-k. Ouyang, Y-G. Wang, Adsorption behavior of carboxylated cellulose nanocrystal—polyethyleneimine composite for removal of Cr(VI) ions, Appl. Surf. Sci., 408 (2017) 77–87.
  58. Md. Mian, G. Liu, B. Yousaf, B. Fu, H. Ullah, M. Ali, Q. Abbas, M. Munir, L. Ruijia, Simultaneous functionalization and magnetization of biochar via NH3 ambiance pyrolysis for efficient removal of Cr (VI), Chemosphere, 208 (2018) 712–721.
  59. X. Wen, N. Sun, C. Yan, S. Zhou, T. Pang, Rapid removal of Cr(VI) ions by densely grafted corn stalk fibers: High adsorption capacity and excellent recyclable property, J. Taiwan Inst. Chem. Eng. 000 (2018) 1–10.