References

  1. J.M. Brausch, G.M., Rand, A review of personal care products in the aquatic environment: environmental concentrations and toxicity, Chemosphere, 82 (2011) 1518–1532.
  2. A Sudhaik, P. Raizada, P. Shandilya, P. Singh, Magnetically recoverable graphitic carbon nitride and NiFe2O4 based magnetic photocatalyst for degradation of oxytetracycline antibiotic in simulated wastewater under solar light, J. Environ. Chem. Eng., 6(4) (2018) 3874–3883.
  3. P. Shandilya, D. Mittal, M. Soni, P. Raizada, A. Hosseini-Bandegharaei, A.K. Saini, P. Singh, Fabrication of fluorine doped graphene and SmVO4 based dispersed and adsorptive photocatalyst for abatement of phenolic compounds from water and bacterial disinfection, J. Cleaner Prod., 203 (2018) 386-399.
  4. P. Shandilya, D. Mittal, A. Sudhaik, M. Soni, P. Raizada, A. K. Saini, P. Singh, GdVO4 modified fluorine doped graphene nanosheets as dispersed photocatalyst for mitigation of phenolic compounds in aqueous environment and bacterial disinfection, Sep. Purif. Technol., 210 (2019) 804–816.
  5. S. Gautam, P. Shandilya, B. Priya, V.P. Singh, P. Raizada, R. Rai, M.A. Valente, P. Singh, Superparamagnetic MnFe2O4 dispersed over graphitic carbon sand composite and bentonite as magnetically recoverable photocatalyst for antibiotic mineralization, Sep. Purif. Technol., 172 (2017) 498–511.
  6. P. Shandilya, D. Mittal, M. Soni, P. Raizada, J.H. Lim, D.Y. Jeong, R.P. Dewedi, A.K. Saini, P. Singh, Islanding of EuVO4 on high-dispersed fluorine doped few layered graphene sheets for efficient photocatalytic mineralization of phenolic compounds and bacterial disinfection, J. Taiwan Inst. Chem. Eng., 93 (2018) 528–542.
  7. B. Priya, P. Shandilya, P. Raizada, P. Thakur, N. Singh, P. Singh, Photocatalytic mineralization and degradation kinetics of ampicillin and oxytetracycline antibiotics using graphene sand composite and chitosan supported BiOCl, J. Mol. Catal. A: Chemical, 423 (2016) 400–413.
  8. B. Pare, P. Singh, S.B. Jonnalgadda, Artificial light assisted photocatalytic degradation of lissamine fast yellow dye in ZnO suspension in a slurry batch reactor, Indian J. Chem., 48 (2009) 1364–1369.
  9. C. Ye, J.X. Li, Z.J. Li, X.B. Li, X.B. Fan, L.P. Zhang, B. Chen, C.H. Tung, L.Z. Wu, Enhanced driving force and charge separation efficiency of protonated g-C3N4 for photocatalytic O2 evolution, ACS Catal., 5 (2015) 6973–6979.
  10. Y. Huan, D. Huang, G. Zeng, C. Lai, L. Qin, M. Cheng, S. Ye, B. Song, X. Ren, X. Guo, Selective prepared carbon nanomaterials for advanced photocatalytic application in environmental pollutant treatment and hydrogen production, Appl. Catal. B: Environ., (2018).
  11. K. Maeda, K. Teramura, D.L. Lu, T. Takata, N. Saito, Y. Inoue, K. Domen, Photocatalyst releasing hydrogen from water, Nature, 440 (2006) 295.
  12. A. Sudhaik, P. Raizada, P. Shandilya, D.Y. Jeong, J.H. Lim, P. Singh, Review on fabrication of graphitic carbon nitride based efficient nanocomposites for photodegradation of aqueous phase organic pollutants, J. Ind. Eng. Chem., 67 (2018) 28–51.
  13. P. Raizada, A. Sudhaik, P. Singh, P. Shandilya, P. Thakur, H. Jung, Visible light assisted photodegradation of 2, 4-dinitrophenol using Ag2CO3 loaded phosphorus and sulphur co-doped graphitic carbon nitride nanosheets in simulated wastewater, Arab. J. Chem. (2018).
  14. Y. Huan, G. Zeng, C. Lai, D. Huang, L. Tang, J. Gong, M. Chen, P. Xu, H. Wang, M. Cheng, C. Zhang, W. Xiong, Environment-friendly fullerene separation methods, Chem. Eng. J., 330 (2017) 134–145.
  15. Z. Zhao, Y. Sun, F. Dong, Graphitic carbon nitride based nanocomposites: a review, Nanoscale, 7 (2015) 15–37.
  16. M.N. Gómez-Cerezo, M.J. MunMarcos, D. Tudela, M. Fernández-García, A. Kubacka, Composite Bi2O3–TiO2 catalysts for toluene photo-degradation: ultraviolet and visible light performances, Appl. Catal. B, 156–157 (2014) 307–313.
  17. W.T. Dong, C.S. Zhu, Optical properties of surface-modified Bi2O3 nanoparticles, J. Phys. Chem. Solids, 64 (2003) 265–271.
  18. M. Xiong, L. Chen, Q. Yuan, J. He, S.L. Luo, C.T. Au, S.F. Yin, Controlled synthesis of graphitic carbon nitride/beta bismuth oxide composite and its high visible-light photocatalytic activity, Carbon, 86 (2015) 217–224.
  19. Y.N. Huo, X.F. Chen, J. Zhang, G.F. Pan, J.P. Jia, H.X. Li, Ordered macroporous Bi2O3/TiO2 film coated on a rotating disk with enhanced photocatalytic activity under visible irradiation, Appl. Catal. B, 148–149 (2014) 550–556.
  20. B. Priya, P. Raizada, N. Singh, P. Thakur, P. Singh, Adsorptional photocatalytic mineralization of oxytetracycline and ampicillin antibiotics using Bi2O32/BiOCl supported on graphene sand composite and chitosan, J. Colloid. Inter. Sci., 47 (2016) 271–283.
  21. K.T. Ranjit, B. Viswanthan, Synthesis, characterization and photocatalytic properties of iron-doped TiO2 catalysts, J. Photochem. Photobiol. A, 108 (1997) 79–84.
  22. S. Gautam, P. Shandilyaa, V.P. Singh, P. Raizada, P. Singh, Solar photocatalytic mineralization of antibiotics using magnetically separable NiFe2O4 supported onto graphene sand composite and bentonite, J. Water Process. Eng., 14 (2016) 86–100.
  23. W.L. Kostedt, J. Drwiega, D.W. Mazyck, S.W. Lee, W. Sigmund, C.Y. Wu, P. Chadik, Magnetically agitated photocatalytic reactor for photocatalytic oxidation of aqueous phase organic pollutants, Environ. Sci. Technol., 39 (2005) 8052–8056.
  24. S. Gautam, P. Shandilya, B. Priya, V.P. Singh, P. Raizada, P. Singh, Graphene bentonite supported ZnFe2O4 as superparamagnetic photocatalyst for antibiotic degradation, Adv. Mater. Lett., 8(3) (2017) 229–238.
  25. J. Navio, G. Colon, M. Trillas, J. Peral, X. Domenech, J.J. Testa, J. Padron, D. Rodriguez, M.I. Litter, Heterogeneous photocatalytic reactions of nitrite oxidation and Cr(VI) reduction on iron-doped titania prepared by the wet impregnation method, Appl. Catal. B, 16 (1998) 187–196.
  26. K.T. Ranjit, B. Viswanthan, Synthesis, characterization and photocatalytic properties of iron-doped TiO2 catalysts, J. Photochem. Photobiol. A, 108 (1997) 79–84.
  27. M.I. Litter, J.A. Navio, Comparison of the photocatalytic efficiency of TiO2, iron oxides and mixed Ti (IV)-Fe (III) oxides: photodegradation of oligocarboxylic acids, J. Photochem. Photobiol. A, 84 (1994) 183–193.
  28. Z.Y. Lu, X.X. Zhao, Z. Zhu, Y.S. Yan, W.D. Shi, H.J. Dong, Z.F. Ma, N.L. Gao, Y.S. Wang, H. Huang, Enhanced recyclability, stability, and selectivity of CdS/C@Fe3O4 nanoreactors for orientation photodegradation of ciprofloxacin, Chem. Eur. J., 21 (2015) 18528–18533.
  29. X.F. Bian, K.Q. Hong, L.Q. Liu, M.X. Xu, Magnetically separable hybrid CdS-TiO2-Fe3O42 nanomaterial: Enhanced photocatalytic activity under UV and visible irradiation, Appl. Surf. Sci., 280 (2013) 349–353.
  30. W. Wu, C.Z. Jiang, V.A.L. Roy, Recent progress in magnetic iron oxide–semiconductor composite nanomaterials as promising photocatalysts, Nanoscale, 7 (2015) 38–58.
  31. P. Singh, Sonu, P. Raizada, A. Sudhaik, P. Shandilya, P. Thakur, S. Agarwal, V.K. Gupta, Enhanced photocatalytic activity and stability of AgBr/BiOBr/graphene heterojunction for phenol degradation under visible light, J. Saudi Chem. Soc., (2018).
  32. J. Xian, D. Li, J. Chen, X. Li, M. He, Y. Shao, L. Yu, J. Fang, TiO2 Nanotube array graphene/CdS quantum dots composite film in Z-scheme with enhanced photoactivity and photostability, ACS Appl. Mater. Interfaces, 6 (2014) 13157–13166.
  33. Y. Li, S. Wu, L. Huang, H. Xu, R. Zhang, M. Qu, Q. Gao, H. Li, g-C3N4 modified Bi2O3 composites with enhanced visible-light photocatalytic activity, J. Phys. Chem. Solid., 76 (2015) 112–119.
  34. Y. Zhang, J. Lu, M.R. Hoffmann, Q. Wang, Y. Conga, Q. Wang, H. Jin, Synthesis of g-C3N4/Bi2O3/TiO2 composite nanotubes: enhanced activity under visible light irradiation and improved photoelectrochemical activity, RSC Adv., 5 (2015) 48983–48991.
  35. L. Huang, H. Xu, Y. Li, H. Li, X. Cheng, J. Xia, Y. Xu, G. Cai, Visible-light-induced WO3/g-C3N4 composites with enhanced photocatalytic activity, Dalton Trans., 42 (2013) 8606–8616.
  36. T. Tyborski, C. Merschjann, S. Orthmann, F. Yang, M.C. Lux-Steiner, T. Schedel-Niedrig, Tunable optical transition in polymeric carbon nitrides synthesized via bulk thermal condensation, J. Phys.: Condens. Matter., 24 (2012) 162201.
  37. J. Zhang, Y. Li, P. Zhu, D. Huang, S. Wu, Q. Cui, G. Zou, Graphitic carbon nitride materials synthesized via reactive pyrolysis routes and their properties, Diam. Relat. Mater., 20 (2011) 385–388.
  38. L. Liu, J. Jiang, S. Jin, Z. Xia, M. Tang, Hydrothermal synthesis of β-bismuth oxide nanowires from particles, Cryst. Eng. Comm., 13 (2011) 2529–2532.
  39. A.F. Gualtieri, S. Immovilli, M. Prudenziati, Powder X-ray diffraction data for the new polymorphic compound ω-Bi2O3, Powder Diffr., 12 (1997) 90–92.
  40. S. Kumar, T. Surendar, B. Kumar, A. Baruah, V. Shanker, Synthesis of magnetically separable and recyclable g-C3N4–Fe3O4 hybrid nanocomposites with enhanced photocatalytic performance under visible-light irradiation, J. Phys. Chem. C, 117(49) (2013) 26135–26143.
  41. Q. Zhuang, L. Sun, Y. Ni, One-step synthesis of graphitic carbon nitride nanosheets with the help of melamine and its application for fluorescence detection of mercuric ions, Talanta, 164 (2017) 458–462.
  42. R. Irmawati, M.N.N. Nasriah, Y.H. Taufig-Yap, S.B.A. Hamid, Characterization of bismuth oxide catalysts prepared from bismuth trinitrate pentahydrate: influence of bismuth concentration, Catal. Today, 93–95 (2004) 701–709.
  43. Y.J. Cui, Z.X. Ding, X.Z. Fu, X.C. Wang, Construction of conjugated carbon nitride nanoarchitectures in solution at low temperatures for photoredox catalysis, Angew. Chem., 124(47) (2012) 11984–11988.
  44. H.J. Cui, J.W. Shi, B. Yuan, M.L. Fu, Synthesis of porous magnetic ferrite nanowires containing Mn and their application in water treatment, J. Mater. Chem. A, 1 (2013) 5902–5907.
  45. H.Y. Zhu, R. Jiang, S.H. Huang, J. Yao, F.Q. Fu, J.B. Li, Novel magnetic NiFe2O4/multi-walled carbon nanotubes hybrids: facile synthesis, characterization, and application to the treatment of dyeing wastewater, Ceram. Int., 41 (2015) 11625–11631.
  46. M. Yu, J. Lin, J. Fang, Silica spheres coated with YVO4: Eu3+ Layers via sol-gel process: a simple method to obtain spherical core-shell phosphors, Chem. Mater., 17 (2005) 1783–1791.
  47. L. Xiong, W. Sun, Y. Yang, C. Chen, J. Ni, Heterogeneous photocatalysis of methylene blue over titanate nanotubes: Effect of adsorption, J. Colloid. Interf. Sci., 356 (2011) 211–216.
  48. B. Pare, P. Singh, S.B. Jonnalagadda, Visible light-driven photocatalytic degradation and mineralization of neutral red dye in a slurry photoreactor, Ind. J. Chem. Technol., 17 (2010) 391.
  49. P. Raizada, J. Kumari, P. Shandilya, R. Dhiman, V.P. Singh, P. Singh, Magnetically retrievable Bi2WO6/Fe3O4 immobilized on graphene sand composite for investigation of photocatalytic mineralization of oxytetracycline and ampicillin, Process Saf. Environ. Prot., 106 (2017) 104–116.
  50. P. Raizada P. Singh, A. Kumar, G. Sharma, D. Pathania, P. Thakur, Solar photocatalytic activity of nano-ZnO supported on activated carbon or brick grain particles: role of adsorption in dye degradation, Appl. Catal. A, 486 (2014) 159–169.
  51. B. Gao, T.M. Lim, D.P. Subagio, T.T. Lim, Zr-doped TiO2 for enhanced photocatalytic degradation of bisphenol A, Appl. Catal. A, 375 (2010) 107–115.
  52. P. Raizada, S. Gautam, B. Priya, P. Singh, Preparation and photocatalytic activity of hydroxyapatite supported BiOCl nanocomposite for oxytetracyline removal, Adv. Mater. Lett., 7(4) (2016) 312–318.
  53. S.K. Kansal, M. Singh, D. Sud, Studies on photodegradation of two commercial dyes in aqueous phase using different photocatalysts, J. Hazard. Mater., 141 (2007) 581–590.
  54. P. Singh, P. Raizada, A. Kumar, P. Thakur, Preparation of BSAZnWO4 nanocomposites with enhanced adsorptional photocatalytic, Int. J. Photoenergy, 7 (2013) 7.
  55. V. Buxton. C. Greenstock, W.P. Hellman, A.P. Ross, Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (OH/O− in aqueous solution, J. Phys. Chem. Ref Data, 17 (1988) 513–886.
  56. B. Priya, P. Shandilya, P. Raizada, P. Thakur, N. Singh, P. Singh, Photocatalytic mineralization and degradation kinetics of ampicillin and oxytetracycline antibiotics using graphene sand composite and chitosan supported BiOCl, J. Mol. Catal. A: Chemical, 423 (2016) 400–413.
  57. P. Raizada, P. Shandilya, P. Singh, P. Thakur, Solar light-facilitated oxytetracycline removal from the aqueous phase utilizing a H2O2/ZnWO4/CaO catalytic system, J. Taibah Uni. Sci., 11 (2017) 689–699.
  58. P. Xu, G.M. Zeng, D.L. Huang, C.L. Feng, S. Hu, M.H. Zhao, C. Lai, Z. Wei, C. Huang, G.X. Xie, Z.F. Liu, Use of iron oxide nanomaterials in wastewater treatment: a review, Sci. Total Environ., 424 (2012) 1–10.
  59. H.M. Fan, H.Y. Li, B.K. Liu, Y.C. Lu, T.F. Xie, D.J. Wang, Photoinduced charge transfer properties and photocatalytic activity in Bi2O3/BaTiO3 composite photocatalyst, ACS Appl. Mater. Interfaces, 4 (2012) 4853–4857.
  60. S.C. Yan, S.B. Lv, Z.S. Li, Z.G. Zou, Organic–inorganic composite photocatalyst of g-C3N4 and TaON with improved visible light photocatalytic activities, Dalton Trans., 39 (2010) 1488–1491.
  61. C. Zhao, M. Pelaez, X. Duan, D.D. Dionysiou, Role of pH on photolytic and photocatalytic degradation of antibiotic oxytetracycline in aqueous solution under visible/solar light: kinetics and mechanism studies, Appl. Catal. B, 134 (2013) 83–92.
  62. J.L. Hu, H.M. Li, C.J. Huang, M. Liu, X.Q. Qiu, Enhanced photocatalytic activity of Bi2O3 under visible light irradiation by Cu(II) clusters modification, Appl. Catal. B: Environ., 142–143 (2013) 598–603.