References
- J.M. Brausch, G.M., Rand, A review of personal care products
in the aquatic environment: environmental concentrations
and toxicity, Chemosphere, 82 (2011) 1518–1532.
- A Sudhaik, P. Raizada, P. Shandilya, P. Singh, Magnetically
recoverable graphitic carbon nitride and NiFe2O4 based magnetic
photocatalyst for degradation of oxytetracycline antibiotic
in simulated wastewater under solar light, J. Environ.
Chem. Eng., 6(4) (2018) 3874–3883.
- P. Shandilya, D. Mittal, M. Soni, P. Raizada, A. Hosseini-Bandegharaei,
A.K. Saini, P. Singh, Fabrication of fluorine doped
graphene and SmVO4 based dispersed and adsorptive photocatalyst
for abatement of phenolic compounds from water and
bacterial disinfection, J. Cleaner Prod., 203 (2018) 386-399.
- P. Shandilya, D. Mittal, A. Sudhaik, M. Soni, P. Raizada, A.
K. Saini, P. Singh, GdVO4 modified fluorine doped graphene
nanosheets as dispersed photocatalyst for mitigation of phenolic
compounds in aqueous environment and bacterial disinfection,
Sep. Purif. Technol., 210 (2019) 804–816.
- S. Gautam, P. Shandilya, B. Priya, V.P. Singh, P. Raizada, R.
Rai, M.A. Valente, P. Singh, Superparamagnetic MnFe2O4 dispersed
over graphitic carbon sand composite and bentonite as
magnetically recoverable photocatalyst for antibiotic mineralization,
Sep. Purif. Technol., 172 (2017) 498–511.
- P. Shandilya, D. Mittal, M. Soni, P. Raizada, J.H. Lim, D.Y.
Jeong, R.P. Dewedi, A.K. Saini, P. Singh, Islanding of EuVO4
on high-dispersed fluorine doped few layered graphene sheets
for efficient photocatalytic mineralization of phenolic compounds
and bacterial disinfection, J. Taiwan Inst. Chem. Eng.,
93 (2018) 528–542.
- B. Priya, P. Shandilya, P. Raizada, P. Thakur, N. Singh, P. Singh,
Photocatalytic mineralization and degradation kinetics of
ampicillin and oxytetracycline antibiotics using graphene
sand composite and chitosan supported BiOCl, J. Mol. Catal.
A: Chemical, 423 (2016) 400–413.
- B. Pare, P. Singh, S.B. Jonnalgadda, Artificial light assisted photocatalytic
degradation of lissamine fast yellow dye in ZnO
suspension in a slurry batch reactor, Indian J. Chem., 48 (2009)
1364–1369.
- C. Ye, J.X. Li, Z.J. Li, X.B. Li, X.B. Fan, L.P. Zhang, B. Chen, C.H.
Tung, L.Z. Wu, Enhanced driving force and charge separation
efficiency of protonated g-C3N4 for photocatalytic O2 evolution,
ACS Catal., 5 (2015) 6973–6979.
- Y. Huan, D. Huang, G. Zeng, C. Lai, L. Qin, M. Cheng, S. Ye, B.
Song, X. Ren, X. Guo, Selective prepared carbon nanomaterials
for advanced photocatalytic application in environmental
pollutant treatment and hydrogen production, Appl. Catal. B:
Environ., (2018).
- K. Maeda, K. Teramura, D.L. Lu, T. Takata, N. Saito, Y. Inoue, K.
Domen, Photocatalyst releasing hydrogen from water, Nature,
440 (2006) 295.
- A. Sudhaik, P. Raizada, P. Shandilya, D.Y. Jeong, J.H. Lim, P.
Singh, Review on fabrication of graphitic carbon nitride based
efficient nanocomposites for photodegradation of aqueous
phase organic pollutants, J. Ind. Eng. Chem., 67 (2018) 28–51.
- P. Raizada, A. Sudhaik, P. Singh, P. Shandilya, P. Thakur, H.
Jung, Visible light assisted photodegradation of 2, 4-dinitrophenol
using Ag2CO3 loaded phosphorus and sulphur
co-doped graphitic carbon nitride nanosheets in simulated
wastewater, Arab. J. Chem. (2018).
- Y. Huan, G. Zeng, C. Lai, D. Huang, L. Tang, J. Gong, M. Chen,
P. Xu, H. Wang, M. Cheng, C. Zhang, W. Xiong, Environment-friendly fullerene separation methods, Chem. Eng. J., 330
(2017) 134–145.
- Z. Zhao, Y. Sun, F. Dong, Graphitic carbon nitride based nanocomposites:
a review, Nanoscale, 7 (2015) 15–37.
- M.N. Gómez-Cerezo, M.J. MunMarcos, D. Tudela, M. Fernández-García, A. Kubacka, Composite Bi2O3–TiO2 catalysts for
toluene photo-degradation: ultraviolet and visible light performances,
Appl. Catal. B, 156–157 (2014) 307–313.
- W.T. Dong, C.S. Zhu, Optical properties of surface-modified
Bi2O3 nanoparticles, J. Phys. Chem. Solids, 64 (2003) 265–271.
- M. Xiong, L. Chen, Q. Yuan, J. He, S.L. Luo, C.T. Au, S.F. Yin,
Controlled synthesis of graphitic carbon nitride/beta bismuth
oxide composite and its high visible-light photocatalytic activity,
Carbon, 86 (2015) 217–224.
- Y.N. Huo, X.F. Chen, J. Zhang, G.F. Pan, J.P. Jia, H.X. Li, Ordered
macroporous Bi2O3/TiO2 film coated on a rotating disk with
enhanced photocatalytic activity under visible irradiation,
Appl. Catal. B, 148–149 (2014) 550–556.
- B. Priya, P. Raizada, N. Singh, P. Thakur, P. Singh, Adsorptional
photocatalytic mineralization of oxytetracycline and ampicillin
antibiotics using Bi2O32/BiOCl supported on graphene sand
composite and chitosan, J. Colloid. Inter. Sci., 47 (2016) 271–283.
- K.T. Ranjit, B. Viswanthan, Synthesis, characterization and
photocatalytic properties of iron-doped TiO2 catalysts, J. Photochem.
Photobiol. A, 108 (1997) 79–84.
- S. Gautam, P. Shandilyaa, V.P. Singh, P. Raizada, P. Singh, Solar
photocatalytic mineralization of antibiotics using magnetically
separable NiFe2O4 supported onto graphene sand composite
and bentonite, J. Water Process. Eng., 14 (2016) 86–100.
- W.L. Kostedt, J. Drwiega, D.W. Mazyck, S.W. Lee, W. Sigmund,
C.Y. Wu, P. Chadik, Magnetically agitated photocatalytic reactor
for photocatalytic oxidation of aqueous phase organic pollutants,
Environ. Sci. Technol., 39 (2005) 8052–8056.
- S. Gautam, P. Shandilya, B. Priya, V.P. Singh, P. Raizada, P.
Singh, Graphene bentonite supported ZnFe2O4 as superparamagnetic
photocatalyst for antibiotic degradation, Adv. Mater.
Lett., 8(3) (2017) 229–238.
- J. Navio, G. Colon, M. Trillas, J. Peral, X. Domenech, J.J. Testa,
J. Padron, D. Rodriguez, M.I. Litter, Heterogeneous photocatalytic
reactions of nitrite oxidation and Cr(VI) reduction on
iron-doped titania prepared by the wet impregnation method,
Appl. Catal. B, 16 (1998) 187–196.
- K.T. Ranjit, B. Viswanthan, Synthesis, characterization and
photocatalytic properties of iron-doped TiO2 catalysts, J. Photochem.
Photobiol. A, 108 (1997) 79–84.
- M.I. Litter, J.A. Navio, Comparison of the photocatalytic efficiency
of TiO2, iron oxides and mixed Ti (IV)-Fe (III) oxides:
photodegradation of oligocarboxylic acids, J. Photochem. Photobiol.
A, 84 (1994) 183–193.
- Z.Y. Lu, X.X. Zhao, Z. Zhu, Y.S. Yan, W.D. Shi, H.J. Dong, Z.F.
Ma, N.L. Gao, Y.S. Wang, H. Huang, Enhanced recyclability,
stability, and selectivity of CdS/C@Fe3O4 nanoreactors for orientation
photodegradation of ciprofloxacin, Chem. Eur. J., 21
(2015) 18528–18533.
- X.F. Bian, K.Q. Hong, L.Q. Liu, M.X. Xu, Magnetically separable
hybrid CdS-TiO2-Fe3O42 nanomaterial: Enhanced photocatalytic
activity under UV and visible irradiation, Appl. Surf. Sci.,
280 (2013) 349–353.
- W. Wu, C.Z. Jiang, V.A.L. Roy, Recent progress in magnetic
iron oxide–semiconductor composite nanomaterials as promising
photocatalysts, Nanoscale, 7 (2015) 38–58.
- P. Singh, Sonu, P. Raizada, A. Sudhaik, P. Shandilya, P.
Thakur, S. Agarwal, V.K. Gupta, Enhanced photocatalytic
activity and stability of AgBr/BiOBr/graphene heterojunction
for phenol degradation under visible light, J. Saudi
Chem. Soc., (2018).
- J. Xian, D. Li, J. Chen, X. Li, M. He, Y. Shao, L. Yu, J. Fang, TiO2
Nanotube array graphene/CdS quantum dots composite film
in Z-scheme with enhanced photoactivity and photostability,
ACS Appl. Mater. Interfaces, 6 (2014) 13157–13166.
- Y. Li, S. Wu, L. Huang, H. Xu, R. Zhang, M. Qu, Q. Gao, H. Li,
g-C3N4 modified Bi2O3 composites with enhanced visible-light
photocatalytic activity, J. Phys. Chem. Solid., 76 (2015) 112–119.
- Y. Zhang, J. Lu, M.R. Hoffmann, Q. Wang, Y. Conga, Q. Wang,
H. Jin, Synthesis of g-C3N4/Bi2O3/TiO2 composite nanotubes:
enhanced activity under visible light irradiation and improved
photoelectrochemical activity, RSC Adv., 5 (2015) 48983–48991.
- L. Huang, H. Xu, Y. Li, H. Li, X. Cheng, J. Xia, Y. Xu, G. Cai,
Visible-light-induced WO3/g-C3N4 composites with enhanced
photocatalytic activity, Dalton Trans., 42 (2013) 8606–8616.
- T. Tyborski, C. Merschjann, S. Orthmann, F. Yang, M.C. Lux-Steiner, T. Schedel-Niedrig, Tunable optical transition in
polymeric carbon nitrides synthesized via bulk thermal condensation,
J. Phys.: Condens. Matter., 24 (2012) 162201.
- J. Zhang, Y. Li, P. Zhu, D. Huang, S. Wu, Q. Cui, G. Zou, Graphitic
carbon nitride materials synthesized via reactive pyrolysis
routes and their properties, Diam. Relat. Mater., 20 (2011)
385–388.
- L. Liu, J. Jiang, S. Jin, Z. Xia, M. Tang, Hydrothermal synthesis
of β-bismuth oxide nanowires from particles, Cryst. Eng.
Comm., 13 (2011) 2529–2532.
- A.F. Gualtieri, S. Immovilli, M. Prudenziati, Powder X-ray
diffraction data for the new polymorphic compound ω-Bi2O3,
Powder Diffr., 12 (1997) 90–92.
- S. Kumar, T. Surendar, B. Kumar, A. Baruah, V. Shanker, Synthesis
of magnetically separable and recyclable g-C3N4–Fe3O4
hybrid nanocomposites with enhanced photocatalytic performance
under visible-light irradiation, J. Phys. Chem. C, 117(49)
(2013) 26135–26143.
- Q. Zhuang, L. Sun, Y. Ni, One-step synthesis of graphitic carbon
nitride nanosheets with the help of melamine and its application
for fluorescence detection of mercuric ions, Talanta, 164
(2017) 458–462.
- R. Irmawati, M.N.N. Nasriah, Y.H. Taufig-Yap, S.B.A. Hamid,
Characterization of bismuth oxide catalysts prepared from bismuth
trinitrate pentahydrate: influence of bismuth concentration,
Catal. Today, 93–95 (2004) 701–709.
- Y.J. Cui, Z.X. Ding, X.Z. Fu, X.C. Wang, Construction of conjugated
carbon nitride nanoarchitectures in solution at low
temperatures for photoredox catalysis, Angew. Chem., 124(47)
(2012) 11984–11988.
- H.J. Cui, J.W. Shi, B. Yuan, M.L. Fu, Synthesis of porous magnetic
ferrite nanowires containing Mn and their application in
water treatment, J. Mater. Chem. A, 1 (2013) 5902–5907.
- H.Y. Zhu, R. Jiang, S.H. Huang, J. Yao, F.Q. Fu, J.B. Li, Novel
magnetic NiFe2O4/multi-walled carbon nanotubes hybrids:
facile synthesis, characterization, and application to the treatment
of dyeing wastewater, Ceram. Int., 41 (2015) 11625–11631.
- M. Yu, J. Lin, J. Fang, Silica spheres coated with YVO4: Eu3+
Layers via sol-gel process: a simple method to obtain spherical
core-shell phosphors, Chem. Mater., 17 (2005) 1783–1791.
- L. Xiong, W. Sun, Y. Yang, C. Chen, J. Ni, Heterogeneous photocatalysis
of methylene blue over titanate nanotubes: Effect of
adsorption, J. Colloid. Interf. Sci., 356 (2011) 211–216.
- B. Pare, P. Singh, S.B. Jonnalagadda, Visible light-driven photocatalytic
degradation and mineralization of neutral red dye in
a slurry photoreactor, Ind. J. Chem. Technol., 17 (2010) 391.
- P. Raizada, J. Kumari, P. Shandilya, R. Dhiman, V.P. Singh, P.
Singh, Magnetically retrievable Bi2WO6/Fe3O4 immobilized on
graphene sand composite for investigation of photocatalytic
mineralization of oxytetracycline and ampicillin, Process Saf.
Environ. Prot., 106 (2017) 104–116.
- P. Raizada P. Singh, A. Kumar, G. Sharma, D. Pathania, P.
Thakur, Solar photocatalytic activity of nano-ZnO supported
on activated carbon or brick grain particles: role of adsorption
in dye degradation, Appl. Catal. A, 486 (2014) 159–169.
- B. Gao, T.M. Lim, D.P. Subagio, T.T. Lim, Zr-doped TiO2 for
enhanced photocatalytic degradation of bisphenol A, Appl.
Catal. A, 375 (2010) 107–115.
- P. Raizada, S. Gautam, B. Priya, P. Singh, Preparation and photocatalytic
activity of hydroxyapatite supported BiOCl nanocomposite
for oxytetracyline removal, Adv. Mater. Lett., 7(4)
(2016) 312–318.
- S.K. Kansal, M. Singh, D. Sud, Studies on photodegradation of
two commercial dyes in aqueous phase using different photocatalysts,
J. Hazard. Mater., 141 (2007) 581–590.
- P. Singh, P. Raizada, A. Kumar, P. Thakur, Preparation of BSAZnWO4 nanocomposites with enhanced adsorptional photocatalytic,
Int. J. Photoenergy, 7 (2013) 7.
- V. Buxton. C. Greenstock, W.P. Hellman, A.P. Ross, Critical
review of rate constants for reactions of hydrated electrons,
hydrogen atoms and hydroxyl radicals (OH/O− in aqueous
solution, J. Phys. Chem. Ref Data, 17 (1988) 513–886.
- B. Priya, P. Shandilya, P. Raizada, P. Thakur, N. Singh, P. Singh,
Photocatalytic mineralization and degradation kinetics of
ampicillin and oxytetracycline antibiotics using graphene
sand composite and chitosan supported BiOCl, J. Mol. Catal.
A: Chemical, 423 (2016) 400–413.
- P. Raizada, P. Shandilya, P. Singh, P. Thakur, Solar light-facilitated
oxytetracycline removal from the aqueous phase utilizing
a H2O2/ZnWO4/CaO catalytic system, J. Taibah Uni. Sci., 11
(2017) 689–699.
- P. Xu, G.M. Zeng, D.L. Huang, C.L. Feng, S. Hu, M.H. Zhao,
C. Lai, Z. Wei, C. Huang, G.X. Xie, Z.F. Liu, Use of iron oxide
nanomaterials in wastewater treatment: a review, Sci. Total
Environ., 424 (2012) 1–10.
- H.M. Fan, H.Y. Li, B.K. Liu, Y.C. Lu, T.F. Xie, D.J. Wang, Photoinduced
charge transfer properties and photocatalytic activity in
Bi2O3/BaTiO3 composite photocatalyst, ACS Appl. Mater. Interfaces,
4 (2012) 4853–4857.
- S.C. Yan, S.B. Lv, Z.S. Li, Z.G. Zou, Organic–inorganic composite
photocatalyst of g-C3N4 and TaON with improved visible
light photocatalytic activities, Dalton Trans., 39 (2010) 1488–1491.
- C. Zhao, M. Pelaez, X. Duan, D.D. Dionysiou, Role of pH on
photolytic and photocatalytic degradation of antibiotic oxytetracycline
in aqueous solution under visible/solar light: kinetics
and mechanism studies, Appl. Catal. B, 134 (2013) 83–92.
- J.L. Hu, H.M. Li, C.J. Huang, M. Liu, X.Q. Qiu, Enhanced photocatalytic
activity of Bi2O3 under visible light irradiation by
Cu(II) clusters modification, Appl. Catal. B: Environ., 142–143
(2013) 598–603.