References
- N.K. Pazarlioǧlu, A. Telefoncu, Biodegradation of phenol by Pseudomonas putida immobilized on activated pumice particles,
Process Biochem., 40 (2005) 1807–1814.
- Y. Han, X. Quan, S. Chen, H. Zhao, C. Cui, Y. Zhao, Electrochemically
enhanced adsorption of phenol on activated carbon
fibers in basic aqueous solution, J. Colloid Interface Sci.,
299 (2006) 766–771.
- N.M. Nawawi, S.A. Ahmad, M.Y. Shukor, M.A. Syed, K.A.
Khalil, N.A. Ab Rahman, F.A. Dahalan, A.L. Ibrahim, Statistical
optimisation for improvement of phenol degradation by
Rhodococcus sp. NAM 81, J. Environ. Biol., 37 (2016) 443–451.
- D. Kotresha, G.M. Vidyasagar, Isolation and characterisation
of phenol-degrading Pseudomonas aeruginosa MTCC 4996,
World J. Microbiol. Biotechnol., 24 (2008) 541–547.
- M.V.V.C. Lakshmi, M.P. Kusuma, V. Sridevi, A study on phenol
degradation by Pseudomonas Putida and Pseudomonas Fluorescens,
Asian J. Microbiol. Biotechnol. Environ. Sci., 10 (2008)
835–838.
- G. Busca, S. Berardinelli, C. Resini, L. Arrighi, Technologies
for the removal of phenol from fluid streams: A short review
of recent developments, J. Hazard. Mater., 160 (2008) 265–288.
- L. Jiang, Q. Ruan, R. Li, T. Li, Biodegradation of phenol by
using free and immobilized cells of Acinetobacter sp. BS8Y, J.
Basic Microbiol., 53 (2013) 224–230.
- V. Arutchelvan, V. Kanakasabai, R. Elangovan, S. Nagarajan, V.
Muralikrishnan, Kinetics of high strength phenol degradation
using Bacillus brevis, J. Hazard. Mater., 129 (2006) 216–222.
- M. Mahiudddin, A.N.M. Fakhruddin, Abdullah-Al-Mahin,
Degradation of phenol via meta cleavage pathway by Pseudomonas
fluorescens PU1, ISRN Microbiol., 2012 (2012) 1–6.
- J. Zeyer, A. Wasserfallen, K.N. Timmis, Microbial mineralization
of ring-substituted anilines through an ortho-cleavage
pathway, Appl. Environ. Microbiol., 50 (1985) 447–453.
- S.B. Imandi, V.V.R. Bandaru, S.R. Somalanka, S.R. Bandaru,
H.R. Garapati, Application of statistical experimental designs
for the optimization of medium constituents for the production
of citric acid from pineapple waste, Bioresour. Technol., 99
(2008) 4445–4450.
- S.B. Imandi, V.V.R. Bandaru, S.R. Somalanka, H.R. Garapati,
Optimization of medium constituents for the production of
citric acid from byproduct glycerol using Doehlert experimental
design, Enzyme Microb. Technol., 40 (2007) 1367–1372.
- Y. Li, Z. Liu, F. Cui, Z. Liu, H. Zhao, Application of Plackett-Burman experimental design and Doehlert design to
evaluate nutritional requirements for xylanase production by
Alternaria mali ND-16, Appl. Microbiol. Biotechnol., 77 (2007)
285–291.
- G.H. Rao, G.M. Madhu, Statistical optimization of endo-polygalacturonase
production by overproducing mutants of, J. Biochem.,
2 (2010) 154–157.
- W. Bensalah, M. Feki, M. Wery, H.F. Ayedi, Thick and dense
anodic oxide layers formed on aluminum in sulphuric acid
bath, J. Mater. Sci. Technol., 26 (2010) 113–118.
- M. Sautour, A. Rouget, P. Dantigny, C. Divies, M. Bensoussan,
Application of Doehlert design to determine the combined
effects of temperature, water activity and pH on conidial germination
of Penicillium chrysogenum, J. Appl. Microbiol., 91
(2001) 900–906.
- K.C. Loh, S.S. Chua, Ortho pathway of benzoate degradation
in Pseudomonas putida: Induction of meta pathway at high
substrate concentrations, Enzyme Microb. Technol., 30 (2002)
620–626.
- Z. Liu, W. Xie, D. Li, Y. Peng, Z. Li, S. Liu, Biodegradation of
phenol by bacteria strain Acinetobacter Calcoaceticus PA isolated
from phenolic wastewater, Int. J. Environ. Res. Public
Health, 13 (2016).
- B. Lányi, Classical and rapid identification methods for medically
important bacteria, Methods Microbiol., 19 (1988) 1–67.
- M.B. Ettinger, C.C. Ruchhoft, H.J. Lishka, Sensitive 4-aminoantipyrine
method for phenolic compounds, Anal. Chem., 23
(1951) 1783–1788.
- D.J. Lane, B. Pace, G.J. Olsen, D.A. Stahl, M.L. Sogin, N.R.
Pace, Rapid determination of 16S ribosomal RNA sequences
for phylogenetic analyses, Proc. Natl. Acad. Sci., 82 (1985)
6955–6959.
- K. Tamura, D. Peterson, N. Peterson, G. Stecher, M. Nei, S.
Kumar, MEGA5: Molecular evolutionary genetics analysis
using maximum likelihood, evolutionary distance, and maximum
parsimony methods, Mol. Biol. Evol., 28 (2011) 2731–2739.
- N. Saitou, M. Nei, The neighbor-joining method: a new method
for reconstructing phylogenetic trees, Mol. Biol. Evol., 4 (1987)
406–425.
- J. Felsenstein, Confidence Limits on Phylogenies: An Approach
Using the Bootstrap, Evolution (N. Y)., 39 (1985) 783.
- M. Kimura, A simple method for estimating evolutionary rates
of base substitutions through comparative studies of nucleotide
sequences, J. Mol. Evol., 16 (1980) 111–120.
- E.F. Armstrong, Enzymes. J.B.S. Haldane, M.A. Monographs
on Biochemistry. Edited by R.H.A. Plimmer, D.Sc., and
Sir F. G. Hopkins, M.A., M.B., D.Sc., F.R.S. Pp. vii+235. London:
Longmans, Green & Co., 1930.
- T. Yano, T. Nakahara, S. Kamiyama, K. Yamada, Kinetic studies
on microbial activities in concentrated solutions, Agric.
Biol. Chem., 30 (1966) 42–48.
- X. Yin, J. Zhang, X. Wang, Sequential injection analysis system
for the determination of arsenic by hydride generation atomic
absorption spectrometry, Fenxi Huaxue, 32 (2004) 1365–1367.
- Z. Kurt, J.C. Spain, Biodegradation of chlorobenzene,
1,2-dichlorobenzene, and 1,4-dichlorobenzene in the vadose
zone, Environ. Sci. Technol., 47 (2013) 6846–6854.
- C. Ganesh Kumar, N. Sahu, G. Narender Reddy, R.B.N. Prasad,
N. Nagesh, A. Kamal, Production of melanin pigment from
Pseudomonas stutzeri isolated from red seaweed Hypnea
musciformis, Lett. Appl. Microbiol., 57 (2013) 295–302.
- S.I. Mulla, T.P. Manjunatha, R.S. Hoskeri, P.N. Tallur, H.Z. Ninnekar,
Biodegradation of 3-nitrobenzoate by Bacillus flexus
strain XJU-4, World J. Microbiol. Biotechnol., 27 (2011) 1587–1592.
- S.A. Alamri, Biodegradation of microcystin-RR by Bacillus
flexus isolated from a Saudi freshwater lake, Saudi J. Biol. Sci.,
19 (2012) 435–440.
- J. Yuan, Q. Lai, F. Sun, T. Zheng, Z. Shao, The diversity of
PAH-degrading bacteria in a deep-sea water column above the
southwest Indian ridge, Front. Microbiol., 6 (2015).
- R. Margesin, F. Schinner, Bioremediation (Natural attenuation
and biostimulation) of diesel-oil-contaminated soil in an
Alpine Glacier Skiing area, Appl. Environ. Microbiol., 67 (2001)
3127–3133.
- A. Pakula, E. Bieszkiewicz, H. Boszczyk-Maleszak, R. Mycielski,
Biodegradation of phenol by bacterial strains from petroleum-refining wastewater purification plant, Acta Microbiol.
Pol., 48 (1999) 373–380.
- P.N. Polymenakou, E.G. Stephanou, Effect of temperature and
additional carbon sources on phenol degradation by an indigenous
soil Pseudomonad, Biodegradation, 16 (2005) 403–413.
- G. Annadurai, S.M. Balan, T. Murugesan, Box-Behnken design
in the development of optimized complex medium for phenol
degradation using Pseudomonas putida (NICM 2174), Bioprocess
Eng., 21 (1999) 415–421.
- J.W. Kim, N.E. Armstrong, A comprehensive study on the biological
treatabilities of phenol and methanol-III Treatment system
design, Water Res., 15 (1981) 1249–1257.
- B.K. Robertson, M. Alexander, Influence of calcium, iron, and
pH on phosphate availability for microbial mineralization of
organic chemicals, Appl. Environ. Microbiol., 58 (1992) 38–41.
- G.A. Hill, C.W. Robinson, Substrate inhibition kinetics: Phenol
degradation by Pseudomonas putida, Biotechnol. Bioeng., 17
(1975) 1599–1615.
- K. Bandyopadhyay, D. Das, B.R. Maiti, Kinetics of phenol degradation
using Pseudomonas putida MTCC 1194, Bioprocess
Eng., 18 (1998) 373–377.
- S. Dayana Priyadharshini, A.K. Bakthavatsalam, Optimization
of phenol degradation by the microalga Chlorella pyrenoidosa using Plackett-Burman design and response surface methodology,
Bioresour. Technol., 207 (2016) 150–156.
- S. Soatto, Observability of shape from focus, Proc. IEEE Conf.
Decis. Control, 3 (1998) 3251–3256.
- M. Tian, D. Du, W. Zhou, X. Zeng, G. Cheng, Phenol degradation
and genotypic analysis of dioxygenase genes in bacteria
isolated from sediments, Brazilian J. Microbiol., 48 (2017)
305–313.
- A. Kumar, B. Bhunia, D. Dasgupta, T. Mandal, A. Dey, S. Datta,
P. Bhattacharya, Optimization of culture condition for growth
and phenol degradation by Alcaligenes faecalis JF339228 using
Taguchi methodology, Desal. Water Treat., 51 (2013) 3153–3163.
- M.P. Shah, Microbiological removal of phenol by an application
of Pseudomonas spp . ETL: An innovative biotechnological
approach providing answers to the problems of FETP, J.
Appl. Environ. Microbiol., 2 (2014) 6–11.
- J. Jaccard, C.K. Wan, R. Turrisi, The detection and interpretation
of interaction effects between continuous variables in
multiple regression, Multivariate Behav. Res., 25 (1990) 467–478.
- S. Akhnazarova, V. Kafarov, Experiment optimization in
chemistry and chemical engineering, Mir Publishers, Moscow,
1982.