References

  1. N.K. Pazarlioǧlu, A. Telefoncu, Biodegradation of phenol by Pseudomonas putida immobilized on activated pumice particles, Process Biochem., 40 (2005) 1807–1814.
  2. Y. Han, X. Quan, S. Chen, H. Zhao, C. Cui, Y. Zhao, Electrochemically enhanced adsorption of phenol on activated carbon fibers in basic aqueous solution, J. Colloid Interface Sci., 299 (2006) 766–771.
  3. N.M. Nawawi, S.A. Ahmad, M.Y. Shukor, M.A. Syed, K.A. Khalil, N.A. Ab Rahman, F.A. Dahalan, A.L. Ibrahim, Statistical optimisation for improvement of phenol degradation by Rhodococcus sp. NAM 81, J. Environ. Biol., 37 (2016) 443–451.
  4. D. Kotresha, G.M. Vidyasagar, Isolation and characterisation of phenol-degrading Pseudomonas aeruginosa MTCC 4996, World J. Microbiol. Biotechnol., 24 (2008) 541–547.
  5. M.V.V.C. Lakshmi, M.P. Kusuma, V. Sridevi, A study on phenol degradation by Pseudomonas Putida and Pseudomonas Fluorescens, Asian J. Microbiol. Biotechnol. Environ. Sci., 10 (2008) 835–838.
  6. G. Busca, S. Berardinelli, C. Resini, L. Arrighi, Technologies for the removal of phenol from fluid streams: A short review of recent developments, J. Hazard. Mater., 160 (2008) 265–288.
  7. L. Jiang, Q. Ruan, R. Li, T. Li, Biodegradation of phenol by using free and immobilized cells of Acinetobacter sp. BS8Y, J. Basic Microbiol., 53 (2013) 224–230.
  8. V. Arutchelvan, V. Kanakasabai, R. Elangovan, S. Nagarajan, V. Muralikrishnan, Kinetics of high strength phenol degradation using Bacillus brevis, J. Hazard. Mater., 129 (2006) 216–222.
  9. M. Mahiudddin, A.N.M. Fakhruddin, Abdullah-Al-Mahin, Degradation of phenol via meta cleavage pathway by Pseudomonas fluorescens PU1, ISRN Microbiol., 2012 (2012) 1–6.
  10. J. Zeyer, A. Wasserfallen, K.N. Timmis, Microbial mineralization of ring-substituted anilines through an ortho-cleavage pathway, Appl. Environ. Microbiol., 50 (1985) 447–453.
  11. S.B. Imandi, V.V.R. Bandaru, S.R. Somalanka, S.R. Bandaru, H.R. Garapati, Application of statistical experimental designs for the optimization of medium constituents for the production of citric acid from pineapple waste, Bioresour. Technol., 99 (2008) 4445–4450.
  12. S.B. Imandi, V.V.R. Bandaru, S.R. Somalanka, H.R. Garapati, Optimization of medium constituents for the production of citric acid from byproduct glycerol using Doehlert experimental design, Enzyme Microb. Technol., 40 (2007) 1367–1372.
  13. Y. Li, Z. Liu, F. Cui, Z. Liu, H. Zhao, Application of Plackett-Burman experimental design and Doehlert design to evaluate nutritional requirements for xylanase production by Alternaria mali ND-16, Appl. Microbiol. Biotechnol., 77 (2007) 285–291.
  14. G.H. Rao, G.M. Madhu, Statistical optimization of endo-polygalacturonase production by overproducing mutants of, J. Biochem., 2 (2010) 154–157.
  15. W. Bensalah, M. Feki, M. Wery, H.F. Ayedi, Thick and dense anodic oxide layers formed on aluminum in sulphuric acid bath, J. Mater. Sci. Technol., 26 (2010) 113–118.
  16. M. Sautour, A. Rouget, P. Dantigny, C. Divies, M. Bensoussan, Application of Doehlert design to determine the combined effects of temperature, water activity and pH on conidial germination of Penicillium chrysogenum, J. Appl. Microbiol., 91 (2001) 900–906.
  17. K.C. Loh, S.S. Chua, Ortho pathway of benzoate degradation in Pseudomonas putida: Induction of meta pathway at high substrate concentrations, Enzyme Microb. Technol., 30 (2002) 620–626.
  18. Z. Liu, W. Xie, D. Li, Y. Peng, Z. Li, S. Liu, Biodegradation of phenol by bacteria strain Acinetobacter Calcoaceticus PA isolated from phenolic wastewater, Int. J. Environ. Res. Public Health, 13 (2016).
  19. B. Lányi, Classical and rapid identification methods for medically important bacteria, Methods Microbiol., 19 (1988) 1–67.
  20. M.B. Ettinger, C.C. Ruchhoft, H.J. Lishka, Sensitive 4-aminoantipyrine method for phenolic compounds, Anal. Chem., 23 (1951) 1783–1788.
  21. D.J. Lane, B. Pace, G.J. Olsen, D.A. Stahl, M.L. Sogin, N.R. Pace, Rapid determination of 16S ribosomal RNA sequences for phylogenetic analyses, Proc. Natl. Acad. Sci., 82 (1985) 6955–6959.
  22. K. Tamura, D. Peterson, N. Peterson, G. Stecher, M. Nei, S. Kumar, MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods, Mol. Biol. Evol., 28 (2011) 2731–2739.
  23. N. Saitou, M. Nei, The neighbor-joining method: a new method for reconstructing phylogenetic trees, Mol. Biol. Evol., 4 (1987) 406–425.
  24. J. Felsenstein, Confidence Limits on Phylogenies: An Approach Using the Bootstrap, Evolution (N. Y)., 39 (1985) 783.
  25. M. Kimura, A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences, J. Mol. Evol., 16 (1980) 111–120.
  26. E.F. Armstrong, Enzymes. J.B.S. Haldane, M.A. Monographs on Biochemistry. Edited by R.H.A. Plimmer, D.Sc., and Sir F. G. Hopkins, M.A., M.B., D.Sc., F.R.S. Pp. vii+235. London: Longmans, Green & Co., 1930.
  27. T. Yano, T. Nakahara, S. Kamiyama, K. Yamada, Kinetic studies on microbial activities in concentrated solutions, Agric. Biol. Chem., 30 (1966) 42–48.
  28. X. Yin, J. Zhang, X. Wang, Sequential injection analysis system for the determination of arsenic by hydride generation atomic absorption spectrometry, Fenxi Huaxue, 32 (2004) 1365–1367.
  29. Z. Kurt, J.C. Spain, Biodegradation of chlorobenzene, 1,2-dichlorobenzene, and 1,4-dichlorobenzene in the vadose zone, Environ. Sci. Technol., 47 (2013) 6846–6854.
  30. C. Ganesh Kumar, N. Sahu, G. Narender Reddy, R.B.N. Prasad, N. Nagesh, A. Kamal, Production of melanin pigment from Pseudomonas stutzeri isolated from red seaweed Hypnea musciformis, Lett. Appl. Microbiol., 57 (2013) 295–302.
  31. S.I. Mulla, T.P. Manjunatha, R.S. Hoskeri, P.N. Tallur, H.Z. Ninnekar, Biodegradation of 3-nitrobenzoate by Bacillus flexus strain XJU-4, World J. Microbiol. Biotechnol., 27 (2011) 1587–1592.
  32. S.A. Alamri, Biodegradation of microcystin-RR by Bacillus flexus isolated from a Saudi freshwater lake, Saudi J. Biol. Sci., 19 (2012) 435–440.
  33. J. Yuan, Q. Lai, F. Sun, T. Zheng, Z. Shao, The diversity of PAH-degrading bacteria in a deep-sea water column above the southwest Indian ridge, Front. Microbiol., 6 (2015).
  34. R. Margesin, F. Schinner, Bioremediation (Natural attenuation and biostimulation) of diesel-oil-contaminated soil in an Alpine Glacier Skiing area, Appl. Environ. Microbiol., 67 (2001) 3127–3133.
  35. A. Pakula, E. Bieszkiewicz, H. Boszczyk-Maleszak, R. Mycielski, Biodegradation of phenol by bacterial strains from petroleum-refining wastewater purification plant, Acta Microbiol. Pol., 48 (1999) 373–380.
  36. P.N. Polymenakou, E.G. Stephanou, Effect of temperature and additional carbon sources on phenol degradation by an indigenous soil Pseudomonad, Biodegradation, 16 (2005) 403–413.
  37. G. Annadurai, S.M. Balan, T. Murugesan, Box-Behnken design in the development of optimized complex medium for phenol degradation using Pseudomonas putida (NICM 2174), Bioprocess Eng., 21 (1999) 415–421.
  38. J.W. Kim, N.E. Armstrong, A comprehensive study on the biological treatabilities of phenol and methanol-III Treatment system design, Water Res., 15 (1981) 1249–1257.
  39. B.K. Robertson, M. Alexander, Influence of calcium, iron, and pH on phosphate availability for microbial mineralization of organic chemicals, Appl. Environ. Microbiol., 58 (1992) 38–41.
  40. G.A. Hill, C.W. Robinson, Substrate inhibition kinetics: Phenol degradation by Pseudomonas putida, Biotechnol. Bioeng., 17 (1975) 1599–1615.
  41. K. Bandyopadhyay, D. Das, B.R. Maiti, Kinetics of phenol degradation using Pseudomonas putida MTCC 1194, Bioprocess Eng., 18 (1998) 373–377.
  42. S. Dayana Priyadharshini, A.K. Bakthavatsalam, Optimization of phenol degradation by the microalga Chlorella pyrenoidosa using Plackett-Burman design and response surface methodology, Bioresour. Technol., 207 (2016) 150–156.
  43. S. Soatto, Observability of shape from focus, Proc. IEEE Conf. Decis. Control, 3 (1998) 3251–3256.
  44. M. Tian, D. Du, W. Zhou, X. Zeng, G. Cheng, Phenol degradation and genotypic analysis of dioxygenase genes in bacteria isolated from sediments, Brazilian J. Microbiol., 48 (2017) 305–313.
  45. A. Kumar, B. Bhunia, D. Dasgupta, T. Mandal, A. Dey, S. Datta, P. Bhattacharya, Optimization of culture condition for growth and phenol degradation by Alcaligenes faecalis JF339228 using Taguchi methodology, Desal. Water Treat., 51 (2013) 3153–3163.
  46. M.P. Shah, Microbiological removal of phenol by an application of Pseudomonas spp . ETL: An innovative biotechnological approach providing answers to the problems of FETP, J. Appl. Environ. Microbiol., 2 (2014) 6–11.
  47. J. Jaccard, C.K. Wan, R. Turrisi, The detection and interpretation of interaction effects between continuous variables in multiple regression, Multivariate Behav. Res., 25 (1990) 467–478.
  48. S. Akhnazarova, V. Kafarov, Experiment optimization in chemistry and chemical engineering, Mir Publishers, Moscow, 1982.