References

  1. T.Y. Cath, A.E. Childress, M. Elimelech, Forward osmosis: principles, applications, and recent developments, J. Membr. Sci., 281 (2006) 70–87.
  2. C. Klaysom, T.Y. Cath, T. Depuydt, I.F. Vankelecom, Forward and pressure retarded osmosis: potential solutions for global challenges in energy and water supply, Chem. Soc. Rev., 42 (2013) 6959–6989.
  3. J. Zyaie, M. Sheikhi, J. Baniasadi, S. Sahebi, T. Mohammadi, Assessment of thermally modified cellulose acetate forward osmosis membrane using response surface methodology based on Box-Behnken design, Chem. Eng. Technol., 41(9) (2018) 1706-1715.
  4. H. Aghdasinia, A. Khataee, M. Sheikhi, P. Takhtfiroozeh, Pilot plant fluidized-bed reactor for degradation of basic blue 3 in heterogeneous fenton process in the presence of natural magnetite, Environ. Progr. Sustain. Energy, 36 (2017) 1039–1048.
  5. S. Sahebi, Developing thin film composite membranes for engineered osmosis processes, in, 2015.
  6. S. Zhao, L. Zou, C.Y. Tang, D. Mulcahy, Recent developments in forward osmosis: opportunities and challenges, J. Membr. Sci., 396 (2012) 1–21.
  7. T.-S. Chung, S. Zhang, K.Y. Wang, J. Su, M.M. Ling, Forward osmosis processes: yesterday, today and tomorrow, Desalination, 287 (2012) 78–81.
  8. B. Mi, M. Elimelech, Organic fouling of forward osmosis membranes: fouling reversibility and cleaning without chemical reagents, J. Membr. Sci., 348 (2010) 337–345.
  9. R.J. Aaberg, Osmotic power: a new and powerful renewable energy source?, Refocus, 4 (2003) 48–50.
  10. E.G. Beaudry, J.R. Herron, Direct osmosis for concentrating wastewater, SAE Trans., (1997) 460–466.
  11. K. Popper, W. Camirand, F. Nury, W. Stanley, Dialyzer concentrates beverages, Food Eng, 38 (1966) 102–104.
  12. S. Phuntsho, H.K. Shon, S. Hong, S. Lee, S. Vigneswaran, A novel low energy fertilizer driven forward osmosis desalination for direct fertigation: evaluating the performance of fertilizer draw solutions, J. Membr. Sci., 375 (2011) 172–181.
  13. T. Majeed, S. Sahebi, F. Lotfi, J.E. Kim, S. Phuntsho, L.D. Tijing, H.K. Shon, Fertilizer-drawn forward osmosis for irrigation of tomatoes, Desal. Water Treat., 53 (2015) 2746–2759.
  14. S. Sahebi, S. Phuntsho, J.E. Kim, S. Hong, H.K. Shon, Pressure assisted fertiliser drawn osmosis process to enhance final dilution of the fertiliser draw solution beyond osmotic equilibrium, J. Membr. Sci., 481 (2015) 63–72.
  15. N.Y. Yip, A. Tiraferri, W.A. Phillip, J.D. Schiffman, M. Elimelech, High performance thin-film composite forward osmosis membrane, Environ. Sci. Technol., 44 (2010) 3812–3818.
  16. S. Sahebi, S. Phuntsho, L. Tijing, G. Han, D.S. Han, A. Abdel-Wahab, H.K. Shon, Thin-film composite membrane on a compacted woven backing fabric for pressure assisted osmosis, Desalination, 406 (2017) 98–108.
  17. M.T. Hosseinzadeh, A. Hosseinian, Novel thin film composite nanofiltration membrane using monoethanolamine (MEA) and diethanolamine (DEA) with m-phenylenediamine (MPD), J. Polym. Environ., 26 (2018) 1745–1753.
  18. S. Sahebi, H.K. Shon, S. Phuntsho, B. Ramavandi, Fabricating robust thin film composite membranes reinforced on woven mesh backing fabric support for pressure assisted and forward osmosis: A dataset, Data in Brief, 21 (2018) 364–370.
  19. J. Su, Q. Yang, J.F. Teo, T.-S. Chung, Cellulose acetate nanofiltration hollow fiber membranes for forward osmosis processes, J. Membr. Sci., 355 (2010) 36–44.
  20. J. Su, T.-S. Chung, B.J. Helmer, J.S. de Wit, Enhanced double-skinned FO membranes with inner dense layer for wastewater treatment and macromolecule recycle using Sucrose as draw solute, J. Membr. Sci., 396 (2012) 92–100.
  21. J.R. McCutcheon, M. Elimelech, Influence of membrane support layer hydrophobicity on water flux in osmotically driven membrane processes, J. Membr. Sci., 318 (2008) 458–466.
  22. S. Sahebi, S. Phuntsho, Y.C. Woo, M.J. Park, L.D. Tijing, S. Hong, H.K. Shon, Effect of sulphonated polyethersulfone substrate for thin film composite forward osmosis membrane, Desalination, 389 (2016) 129–136.
  23. Y. Wang, F. Wicaksana, C.Y. Tang, A.G. Fane, Direct microscopic observation of forward osmosis membrane fouling, Environ. Sci. Technol., 44 (2010) 7102–7109.
  24. C. Tang, Y. Zhao, R. Wang, C. Hélix-Nielsen, A. Fane, Desalination by biomimetic aquaporin membranes: Review of status and prospects, Desalination, 308 (2013) 34–40.
  25. Fei Z, H. S, Y. J, X. F, Z. Y, Preparation and characterization of bio-based degradable plastic films composed of cellulose acetate and starch acetate, J. Polym. Environ., 23 (2015) 383–391.
  26. Z. Li, R.V. Linares, S. Bucs, L. Fortunato, C. Hélix-Nielsen, J.S. Vrouwenvelder, N. Ghaffour, T. Leiknes, G. Amy, Aquaporin based biomimetic membrane in forward osmosis: Chemical cleaning resistance and practical operation, Desalination, 420 (2017) 208–215.
  27. K.P. Lee, T.C. Arnot, D. Mattia, A review of reverse osmosis membrane materials for desalination—development to date and future potential, J. Membr. Sci., 370 (2011) 1–22.
  28. R. Modi, R. Mehta, H. Brahmbhatt, A. Bhattacharya, Tailor made thin film composite membranes: potentiality towards removal of hydroquinone from water, J. Polym. Environ., 25 (2017) 1140–1146.
  29. L. Xia, M.F. Andersen, C. Hélix-Nielsen, J.R. McCutcheon, Novel commercial aquaporin flat-sheet membrane for forward osmosis, Ind. Eng. Chem. Res., 56 (2017) 11919–11925.
  30. N. Ma, J. Wei, R. Liao, C.Y. Tang, Zeolite-polyamide thin film nanocomposite membranes: towards enhanced performance for forward osmosis, J. Membr. Sci., 405 (2012) 149–157.
  31. N. Niksefat, M. Jahanshahi, A. Rahimpour, The effect of SiO2 nanoparticles on morphology and performance of thin film composite membranes for forward osmosis application, Desalination, 343 (2014) 140–146.
  32. A. Tiraferri, Y. Kang, E.P. Giannelis, M. Elimelech, Highly hydrophilic thin-film composite forward osmosis membranes functionalized with surface-tailored nanoparticles, ACS Appl. Mater. Interf., 4 (2012) 5044–5053.
  33. M. Amini, M. Jahanshahi, A. Rahimpour, Synthesis of novel thin film nanocomposite (TFN) forward osmosis membranes using functionalized multi-walled carbon nanotubes, J. Membr. Sci., 435 (2013) 233–241.
  34. H. Zhao, S. Qiu, L. Wu, L. Zhang, H. Chen, C. Gao, Improving the performance of polyamide reverse osmosis membrane by incorporation of modified multi-walled carbon nanotubes, J. Membr. Sci., 450 (2014) 249–256.
  35. D. Emadzadeh, W.J. Lau, T. Matsuura, A.F. Ismail, M. Rahbari-Sisakht, Synthesis and characterization of thin film nanocomposite forward osmosis membrane with hydrophilic nanocomposite support to reduce internal concentration polarization, J. Membr. Sci., 449 (2014) 74–85.
  36. M. Kumar, M. Grzelakowski, J. Zilles, M. Clark, W. Meier, Highly permeable polymeric membranes based on the incorporation of the functional water channel protein Aquaporin Z, Proc. Nat. Acad. Sci., 104 (2007) 20719–20724.
  37. H.C. Visser, D.N. Reinhoudt, F. de Jong, Carrier-mediated transport through liquid membranes, Chem. Soc. Rev., 23 (1994) 75–81.
  38. G. Stark, B. Ketterer, R. Benz, P. Läuger, The rate constants of valinomycin-mediated ion transport through thin lipid membranes, Biophys. J., 11 (1971) 981–994.
  39. Y. Kondo, T. Bührer, E. Frömter, W. Simon, A new double-barrelled, ionophore-based microelectrode for chloride ions, Pflügers Archiv, 414 (1989) 663–668.
  40. V.S. Kislik, Liquid Membranes: Principles and Applications in Chemical Separations and Wastewater Treatment, Elsevier, 2009.
  41. J. Ren, J.R. McCutcheon, A new commercial biomimetic hollow fiber membrane for forward osmosis, Desalination, 442 (2018) 44–50.
  42. G. Sun, H. Zhou, Y. Li, K. Jeyaseelan, A. Armugam, T.-S. Chung, A novel method of Aquaporin Z incorporation via binary-lipid Langmuir monolayers, Colloids Surfaces B: Biointerfaces, 89 (2012) 283–288.
  43. X. Li, R. Wang, C. Tang, A. Vararattanavech, Y. Zhao, J. Torres, T. Fane, Preparation of supported lipid membranes for aquaporin Z incorporation, Colloids Surfaces B: Biointerfaces, 94 (2012) 333–340.
  44. H. Wang, T.S. Chung, Y.W. Tong, K. Jeyaseelan, A. Armugam, Z. Chen, M. Hong, W. Meier, Highly permeable and selective pore-spanning biomimetic membrane embedded with Aquaporin Z, Small, 8 (2012) 1185–1190.
  45. M. Sára, U.B. Sleytr, Production and characteristics of ultrafiltration membranes with uniform pores from two-dimensional arrays of proteins, J. Membr. Sci., 33 (1987) 27–49.
  46. S. Weigert, M. Sára, Surface modification of an ultrafiltration membrane with crystalline structure and studies on interactions with selected protein molecules, J. Membr. Sci., 106 (1995) 147–159.
  47. M. Khajouei, M. Jahanshahi, M. Peyravi, H. Hoseinpour, A.S. Rad, Anti-bacterial assay of doped membrane by zero valent Fe nanoparticle via in-situ and ex-situ aspect, Chem. Eng. Res. Design, 117 (2017) 287–300.
  48. J. Puls, S.A. Wilson, D. Hölter, Degradation of cellulose acetate-based materials: a review, J. Polym. Environ., 19 (2011) 152–165.
  49. G. Sun, T.-S. Chung, K. Jeyaseelan, A. Armugam, A layer-by-layer self-assembly approach to developing an aquaporin-embedded mixed matrix membrane, RSC Adv., 3 (2013) 473–481.
  50. G. Sun, T.-S. Chung, K. Jeyaseelan, A. Armugam, Stabilization and immobilization of aquaporin reconstituted lipid vesicles for water purification, Colloids Surfaces B: Biointerfaces, 102 (2013) 466–471.
  51. G. Sun, T.-S. Chung, N. Chen, X. Lu, Q. Zhao, Highly permeable aquaporin-embedded biomimetic membranes featuring a magnetic-aided approach, RSC Adv., 3 (2013) 9178–9184.
  52. S. Loeb, L. Titelman, E. Korngold, J. Freiman, Effect of porous support fabric on osmosis through a Loeb-Sourirajan type asymmetric membrane, J. Membr. Sci., 129 (1997) 243–249.
  53. Y. Zhao, C. Qiu, X. Li, A. Vararattanavech, W. Shen, J. Torres, C. Hélix-Nielsen, R. Wang, X. Hu, A.G. Fane, C.Y. Tang, Synthesis of robust and high-performance aquaporin-based biomimetic membranes by interfacial polymerization-membrane preparation and RO performance characterization, J. Membr. Sci., 423–424 (2012) 422–428.
  54. T. Hu, X. Wang, C. Wang, X. Li, Y. Ren, Impacts of inorganic draw solutes on the performance of thin-film composite forward osmosis membrane in a microfiltration assisted anaerobic osmotic membrane bioreactor, RSC Adv., 7 (2017) 16057–16063.
  55. Y. Chun, L. Qing, G. Sun, M.R. Bilad, A.G. Fane, T.H. Chong, Prototype aquaporin-based forward osmosis membrane: Filtration properties and fouling resistance, Desalination, 445 (2018) 75–84.
  56. M. Qasim, N.A. Darwish, S. Sarp, N. Hilal, Water desalination by forward (direct) osmosis phenomenon: A comprehensive review, Desalination, 374 (2015) 47–69.
  57. Y.-x. Shen, P.O. Saboe, I.T. Sines, M. Erbakan, M. Kumar, Biomimetic membranes: A review, J. Membr. Sci., 454 (2014) 359–381.
  58. S. Phuntsho, S. Sahebi, T. Majeed, F. Lotfi, J.E. Kim, H.K. Shon, Assessing the major factors affecting the performances of forward osmosis and its implications on the desalination process, Chem. Eng. J., 231 (2013) 484–496.
  59. G.T. Gray, J.R. McCutcheon, M. Elimelech, Internal concentration polarization in forward osmosis: role of membrane orientation, Desalination, 197 (2006) 1–8.
  60. K.Y. Wang, T.S. Chung, G. Amy, Developing thin-film-composite forward osmosis membranes on the PES/SPSf substrate through interfacial polymerization, AIChE J., 58 (2012) 770–781.
  61. C. Bae, K. Park, H. Heo, D.R. Yang, Quantitative estimation of internal concentration polarization in a spiral wound forward osmosis membrane module compared to a flat sheet membrane module, Korean J. Chem. Eng., 34 (2017) 844–853.
  62. W.A. Phillip, J.S. Yong, M. Elimelech, Reverse draw solute permeation in forward osmosis: modeling and experiments, Environ. Sci. Technol., 44 (2010) 5170–5176.
  63. J. Wei, C. Qiu, C.Y. Tang, R. Wang, A.G. Fane, Synthesis and characterization of flat-sheet thin film composite forward osmosis membranes, J. Membr. Sci., 372 (2011) 292–302.
  64. A. Tiraferri, N.Y. Yip, W.A. Phillip, J.D. Schiffman, M. Elimelech, Relating performance of thin-film composite forward osmosis membranes to support layer formation and structure, J. Membr. Sci., 367 (2011) 340–352.