References

  1. G. Barzegar, S. Jorfi, V. Zarezade, M. Khatebasreh, F. Mehdipour, F. Ghanbari, 4-Chlorophenol degradation using ultrasound/peroxymonosulfate/nanoscale zero valent iron: reusability, identification of degradation intermediates and potential application for real wastewater, Chemosphere, 201 (2018) 370–379.
  2. E. Aranda, E. Marco-Urrea, G. Caminal, M.E. Arias, I. García-Romera, F. Guillén, Advanced oxidation of benzene, toluene, ethylbenzene and xylene isomers (BTEX) by Trametes versicolor, J. Hazard. Mater., 181 (2010) 181–186.
  3. A.L.N. Mota, A.F. Albuquerque, L.T.C. Beltrame, O. Chiavone-Filho, A. Machulek Jr., C.A.O. Nascimento, Advanced oxidation processes and their application in the petroleum industry: a review, Brazil. J. Petrol. Gas., 2 (2008) 122–142;
  4. S. Jorfi, S. Pourfadakari, B. Kakavandi, A new approach in sonophotocatalytic degradation of recalcitrant textile wastewater using MgO@Zeolite nanostructure under UVA irradiation, Chem. Eng. J., 343 (2018) 95–107.
  5. John C. Crittenden, R. Rhodes Trussell, David W. Hand, K.J.H.a.G. Tchobanoglous, MWH’s Water Treatment Principles and Design, 3rd ed., John Wiley & Sons, Inc., Canada, 2012.
  6. H. Choi, S.R. Al-Abed, D.D. Dionysiou, E. Stathatos, P. Lianos, TiO2-based Advanced Oxidation Nanotechnologies for Water Purification and Reuse, in: Sustainability Science and Engineering, Elsevier, Netherlands, 2010, pp. 229–254.
  7. G. Boczkaj, A. Fernandes, Wastewater treatment by means of advanced oxidation processes at basic pH conditions: a review, Chem. Eng. J., 320 (2017) 608–633.
  8. M. Nurisepehr, S. Jorfi, R. Rezaei Kalantary, H. Akbari, R. Darvishi Cheshmeh Soltani, M. Samaei, Sequencing treatment of landfill leachate using ammonia stripping, Fenton oxidation and biological treatment, Waste Manage. Res., 30 (2012) 883–887.
  9. A.S. Stasinakis, Use of selected advanced oxidation processes (AOPs) for wastewater treatment – a mini review, Global NEST J., 10 (2008) 376–385.
  10. S. Wang, A Comparative study of Fenton and Fenton-like reaction kinetics in decolourisation of wastewater, Dyes Pigm., 76 (2008) 714–720.
  11. J. Ma, W. Song, C. Chen, W. Ma, J. Zhao, Y. Tang, Fenton degradation of organic compounds promoted by dyes under visible irradiation, Environ. Sci. Technol., 395 (2005) 5810–5815.
  12. M.B. Ray, J.P. Chen, L.K. Wang, S.O. Pehkonen, Advanced Physicochemical Treatment Processes, Humana Press, 2005.
  13. E. Brillas, I. Sires, M.A. Oturan, Electro-Fenton process and related electrochemical technologies based on Fenton’s reaction chemistry, Chem. Rev., 109 (2009) 6570–6631.
  14. C.-c. Jiang, J.-f. Zhang, Progress and prospect in electro-Fenton process for wastewater treatment, J. Zhejiang Univ.-Sci. A, 8 (2007) 1118–1125.
  15. H. Chen, W. Liu, Z. Qin, ZnO/ZnFe2O4 nanocomposite as a broad-spectrum photo-Fenton-like photocatalyst with nearinfrared activity, Catal. Sci. Technol., 7 (2017) 2236–2244.
  16. F.C. Moreira, R.A.R. Boaventura, E. Brillas, V.J.P. Vilar, Electrochemical advanced oxidation processes: a review on their application to synthetic and real wastewaters, Appl. Catal., B, 202 (2017) 217–261.
  17. P.V. Nidheesh, R. Gandhimathi, Trends in Electro-Fenton process for water and wastewater treatment: an overview, Desalination, 299 (2012) 1–15.
  18. R.H. Myers, D.C. Montgomery, C.M. Andersoon-cook, Response Surface Methodology (process and product optimization using design experiments), 3rd ed., John Wiley & Sons, Inc., New Jersey, 2009.
  19. A. Shojaie, M. Fattahi, S. Jorfi, B. Ghasemi, Hydrothermal synthesis of Fe-TiO2-Ag nano-sphere for photocatalytic degradation of 4-chlorophenol (4-CP): investigating the effect of hydrothermal temperature and time as well as calcination temperature, J. Environ. Chem. Eng., 5 (2017) 4564–4572.
  20. A. Khuri, S. Mukhopadhyay, Response Surface Methodology, John Wiley & Sons, Inc., London, Vol. 2, 2010, pp. 128–149.
  21. P. Pakravan, A. Akhbari, H. Moradi, A. Hemati Azandaryani, A.M. Mansouri, M. Safari, Process modeling and evaluation of petroleum refinery wastewater treatment through response surface methodology and artificial neural network in a photocatalytic reactor using poly ethyleneimine (PEI)/titania (TiO2) multilayer film on quartz tube, Appl. Petrochem. Res., 5 (2015) 47–59.
  22. M.J.K. Bashir, S.S. Abu Amr, S.Q. Aziz, N.C. Aun, S. Sethupathi, Wastewater treatment processes optimization using response surface methodology (RSM) compared with conventional methods: review and comparative study, Middle-East J. Sci. Res., 23 (2015) 244–252.
  23. G. Barzegar, S. Jorfi, R.D.C. Soltani, M. Ahmadi, R. Saeedi, M. Abtahi, B. Ramavandi, Z. Baboli, Enhanced sono-Fenton-like oxidation of PAH-contaminated soil using nano-sized magnetite as catalyst: optimization with response surface methodology, Soil Sediment Contam., 26 (2017) 538–557.
  24. B.K. Körbahti, Response surface optimization of electrochemical treatment of textile dye wastewater, J. Hazard. Mater., 145 (2007) 277–286.
  25. I. Arslan-Alaton, G. Tureli, T. Olmez-Hanci, Treatment of azo dye production wastewaters using photo-Fenton like advanced oxidation processes: optimization by response surface methodology, J. Photochem. Photobiol., A, 202 (2009) 142–153.
  26. S. Jorfi, S. Pourfadakari, M. Ahmadi, Electrokinetic treatment of high saline petrochemical wastewater: evaluation and scale-up, J. Environ. Manage., 204 (2017) 221–229.
  27. A. Singh, A. Verma, P. Bansal, J. Singla, Evaluation of the process parameters for electro Fenton and electrochlorination treatment of reactive black 5 (rb5) dye, J. Electrochem. Soc., 164 (2017) 203–212.
  28. M.M. Ghoneim, H.S. El-Desoky, N.M. Zidan, Electro-Fenton oxidation of sunset yellow FCF azo-dye in aqueous solutions, Desalination, 274 (2011) 22–30.
  29. C.-T. Wang, W.-L. Chou, M.-H. Chung, Y.-M. Kuo, COD removal from real dyeing wastewater by electro-Fenton technology using an activated carbon fiber cathode, Desalination, 253 (2010) 129–134.
  30. H. Shemer, K.G. Linden, Degradation and by-product formation of diazinon in water during UV and UV/H2O2 treatment, J. Hazard. Mater., 136 (2006) 553–559.
  31. M. Ahmadi, S. Jorfi, R. Kujlu, S. Ghafari, R. Darvishi Cheshmeh Soltani, N. Jaafarzadeh Haghighifard, A novel salt-tolerant bacterial consortium for biodegradation of saline and recalcitrant petrochemical wastewater, J. Environ. Manage., 191 (2017) 198–208.
  32. A.K. Abdessalem, N. Oturan, N. Bellakhal, M. Dachraoui, M.A. Oturan, Experimental design methodology applied to electro-Fenton treatment for degradation of herbicide chlortoluron, Appl. Catal., B, 78 (2008) 334–341.
  33. F. Hayati, A. Isari, M. Fattahi, B. Anvaripour, S. Jorfi, Photocatalytic decontamination of phenol and petrochemical wastewater through ZnO/TiO2 decorated on reduced graphene oxide nanocomposite: influential operating factors, mechanism, and electrical energy consumption, RSC Adv., 8 (2018) 40035–40053.
  34. N.P. Tantak, S. Chaudhari, Degradation of azo dyes by sequential Fenton’s oxidation and aerobic biological treatment, J. Hazard. Mater., 136 (2006) 698–705.
  35. Y. Safa, H.N. Bhatti, Kinetic and thermodynamic modeling for the removal of Direct Red-31 and Direct Orange-26 dyes from aqueous solutions by rice husk, Desalination, 272 (2011) 313–322.