References
- G. Barzegar, S. Jorfi, V. Zarezade, M. Khatebasreh, F. Mehdipour,
F. Ghanbari, 4-Chlorophenol degradation using ultrasound/peroxymonosulfate/nanoscale zero valent iron: reusability,
identification of degradation intermediates and potential
application for real wastewater, Chemosphere, 201 (2018)
370–379.
- E. Aranda, E. Marco-Urrea, G. Caminal, M.E. Arias, I. García-Romera, F. Guillén, Advanced oxidation of benzene, toluene,
ethylbenzene and xylene isomers (BTEX) by Trametes
versicolor, J. Hazard. Mater., 181 (2010) 181–186.
- A.L.N. Mota, A.F. Albuquerque, L.T.C. Beltrame, O. Chiavone-Filho, A. Machulek Jr., C.A.O. Nascimento, Advanced oxidation
processes and their application in the petroleum industry: a
review, Brazil. J. Petrol. Gas., 2 (2008) 122–142;
- S. Jorfi, S. Pourfadakari, B. Kakavandi, A new approach in sonophotocatalytic
degradation of recalcitrant textile wastewater
using MgO@Zeolite nanostructure under UVA irradiation,
Chem. Eng. J., 343 (2018) 95–107.
- John C. Crittenden, R. Rhodes Trussell, David W. Hand,
K.J.H.a.G. Tchobanoglous, MWH’s Water Treatment Principles
and Design, 3rd ed., John Wiley & Sons, Inc., Canada, 2012.
- H. Choi, S.R. Al-Abed, D.D. Dionysiou, E. Stathatos, P. Lianos,
TiO2-based Advanced Oxidation Nanotechnologies for
Water Purification and Reuse, in: Sustainability Science and
Engineering, Elsevier, Netherlands, 2010, pp. 229–254.
- G. Boczkaj, A. Fernandes, Wastewater treatment by means of
advanced oxidation processes at basic pH conditions: a review,
Chem. Eng. J., 320 (2017) 608–633.
- M. Nurisepehr, S. Jorfi, R. Rezaei Kalantary, H. Akbari,
R. Darvishi Cheshmeh Soltani, M. Samaei, Sequencing
treatment of landfill leachate using ammonia stripping, Fenton
oxidation and biological treatment, Waste Manage. Res., 30
(2012) 883–887.
- A.S. Stasinakis, Use of selected advanced oxidation processes
(AOPs) for wastewater treatment – a mini review, Global NEST
J., 10 (2008) 376–385.
- S. Wang, A Comparative study of Fenton and Fenton-like
reaction kinetics in decolourisation of wastewater, Dyes Pigm.,
76 (2008) 714–720.
- J. Ma, W. Song, C. Chen, W. Ma, J. Zhao, Y. Tang, Fenton
degradation of organic compounds promoted by dyes
under visible irradiation, Environ. Sci. Technol., 395 (2005)
5810–5815.
- M.B. Ray, J.P. Chen, L.K. Wang, S.O. Pehkonen, Advanced
Physicochemical Treatment Processes, Humana Press, 2005.
- E. Brillas, I. Sires, M.A. Oturan, Electro-Fenton process and
related electrochemical technologies based on Fenton’s reaction
chemistry, Chem. Rev., 109 (2009) 6570–6631.
- C.-c. Jiang, J.-f. Zhang, Progress and prospect in electro-Fenton
process for wastewater treatment, J. Zhejiang Univ.-Sci. A, 8
(2007) 1118–1125.
- H. Chen, W. Liu, Z. Qin, ZnO/ZnFe2O4 nanocomposite as a
broad-spectrum photo-Fenton-like photocatalyst with nearinfrared
activity, Catal. Sci. Technol., 7 (2017) 2236–2244.
- F.C. Moreira, R.A.R. Boaventura, E. Brillas, V.J.P. Vilar,
Electrochemical advanced oxidation processes: a review on
their application to synthetic and real wastewaters, Appl.
Catal., B, 202 (2017) 217–261.
- P.V. Nidheesh, R. Gandhimathi, Trends in Electro-Fenton
process for water and wastewater treatment: an overview,
Desalination, 299 (2012) 1–15.
- R.H. Myers, D.C. Montgomery, C.M. Andersoon-cook, Response
Surface Methodology (process and product optimization using
design experiments), 3rd ed., John Wiley & Sons, Inc., New
Jersey, 2009.
- A. Shojaie, M. Fattahi, S. Jorfi, B. Ghasemi, Hydrothermal
synthesis of Fe-TiO2-Ag nano-sphere for photocatalytic
degradation of 4-chlorophenol (4-CP): investigating the effect
of hydrothermal temperature and time as well as calcination
temperature, J. Environ. Chem. Eng., 5 (2017) 4564–4572.
- A. Khuri, S. Mukhopadhyay, Response Surface Methodology,
John Wiley & Sons, Inc., London, Vol. 2, 2010, pp. 128–149.
- P. Pakravan, A. Akhbari, H. Moradi, A. Hemati Azandaryani,
A.M. Mansouri, M. Safari, Process modeling and evaluation
of petroleum refinery wastewater treatment through response
surface methodology and artificial neural network in a
photocatalytic reactor using poly ethyleneimine (PEI)/titania
(TiO2) multilayer film on quartz tube, Appl. Petrochem. Res., 5
(2015) 47–59.
- M.J.K. Bashir, S.S. Abu Amr, S.Q. Aziz, N.C. Aun, S. Sethupathi,
Wastewater treatment processes optimization using response
surface methodology (RSM) compared with conventional
methods: review and comparative study, Middle-East J. Sci.
Res., 23 (2015) 244–252.
- G. Barzegar, S. Jorfi, R.D.C. Soltani, M. Ahmadi, R. Saeedi,
M. Abtahi, B. Ramavandi, Z. Baboli, Enhanced sono-Fenton-like
oxidation of PAH-contaminated soil using nano-sized
magnetite as catalyst: optimization with response surface
methodology, Soil Sediment Contam., 26 (2017) 538–557.
- B.K. Körbahti, Response surface optimization of electrochemical
treatment of textile dye wastewater, J. Hazard. Mater., 145
(2007) 277–286.
- I. Arslan-Alaton, G. Tureli, T. Olmez-Hanci, Treatment of azo
dye production wastewaters using photo-Fenton like advanced
oxidation processes: optimization by response surface
methodology, J. Photochem. Photobiol., A, 202 (2009) 142–153.
- S. Jorfi, S. Pourfadakari, M. Ahmadi, Electrokinetic treatment of
high saline petrochemical wastewater: evaluation and scale-up,
J. Environ. Manage., 204 (2017) 221–229.
- A. Singh, A. Verma, P. Bansal, J. Singla, Evaluation of the
process parameters for electro Fenton and electrochlorination
treatment of reactive black 5 (rb5) dye, J. Electrochem. Soc., 164
(2017) 203–212.
- M.M. Ghoneim, H.S. El-Desoky, N.M. Zidan, Electro-Fenton
oxidation of sunset yellow FCF azo-dye in aqueous solutions,
Desalination, 274 (2011) 22–30.
- C.-T. Wang, W.-L. Chou, M.-H. Chung, Y.-M. Kuo, COD removal
from real dyeing wastewater by electro-Fenton technology
using an activated carbon fiber cathode, Desalination, 253
(2010) 129–134.
- H. Shemer, K.G. Linden, Degradation and by-product formation
of diazinon in water during UV and UV/H2O2 treatment,
J. Hazard. Mater., 136 (2006) 553–559.
- M. Ahmadi, S. Jorfi, R. Kujlu, S. Ghafari, R. Darvishi Cheshmeh
Soltani, N. Jaafarzadeh Haghighifard, A novel salt-tolerant
bacterial consortium for biodegradation of saline and
recalcitrant petrochemical wastewater, J. Environ. Manage., 191
(2017) 198–208.
- A.K. Abdessalem, N. Oturan, N. Bellakhal, M. Dachraoui,
M.A. Oturan, Experimental design methodology applied
to electro-Fenton treatment for degradation of herbicide
chlortoluron, Appl. Catal., B, 78 (2008) 334–341.
- F. Hayati, A. Isari, M. Fattahi, B. Anvaripour, S. Jorfi,
Photocatalytic decontamination of phenol and petrochemical
wastewater through ZnO/TiO2 decorated on reduced graphene
oxide nanocomposite: influential operating factors, mechanism,
and electrical energy consumption, RSC Adv., 8 (2018)
40035–40053.
- N.P. Tantak, S. Chaudhari, Degradation of azo dyes by
sequential Fenton’s oxidation and aerobic biological treatment,
J. Hazard. Mater., 136 (2006) 698–705.
- Y. Safa, H.N. Bhatti, Kinetic and thermodynamic modeling
for the removal of Direct Red-31 and Direct Orange-26 dyes
from aqueous solutions by rice husk, Desalination, 272 (2011)
313–322.