References
- U.S. EPA, Water Security Initiative: System Evaluation of the
Cincinnati Contamination Warning system Pilot, U.S. EPA
Water Security Division, Washington, D.C., 2014.
- U.S. EPA, Water Security Initiative: Evaluation of the
Water Quality Monitoring Component of the Cincinnati
Contamination Warning System Pilot, U.S. EPA Water Security
Division, Washington, D.C., 2014.
- U.S. EPA, Water Quality Event Detection Systems for Drinking
Water Contamination Warning System (EPA/600/R-010/036),
Office of Research and Development, National Homeland
Security Research Center, Washington, D.C., 2010.
- R.B. Robinson, C.D. Cox, K. Odom, Identifying outliers in
correlated water quality data, J. Environ. Eng., 131 (2005)
651–657.
- D. Hawkins, Identification of Outlier, Chapman and Hall,
London, 1980.
- J.W. Osborne, A. Overbay, The power of outliers (and why
researchers should always check for them), Pract. Assess. Res.
Eval., 9 (2004) 1–12.
- H.P. Kriegel, P. Kroger, A. Zimk, Outlier Detection Techniques,
Tutorial at the 13th Pacific-Asia Conference on Knowledge
Discovery and Data Mining, 10, 2009.
- O. Malmon, L. Rockach, Data Mining and Knowledge
Discovery Handbook: A Complete Guide for Practitioners and
Researchers, Kluwer Academic Publishers, Boston, MA, 2005.
- A. Arning, R. Agrawal, P. Raghavan, A Linear Method for
Deviation Detection in Large Databases, In: Proceedings of
the ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, AAAI Press, Portland, Oregon,
1996, pp. 164–169.
- M.M. Breunig, H.P. Kriegel, R.T. Ng, J. Sander, LOF: Identifying
Density-Based Local Outliers, In ACM SIGMOD Record, 29
(2000) 93–104.
- N.A. Yousri, M.A. Lsmail, M.S. Kamel, Fuzzy Outlier Analysis:
A Combined Clustering – Outlier Detection Approach,
Proceedings of IEEE International Conference on Systems, Man
and Cybernetics, 2007, pp. 412–418.
- M.B. Al-Zoubi, A.D. Ali, A.A. Yahya, Fuzzy Clustering-
Based Approach for Outlier Detection, Proceedings of the 9th
WSEAS International Conference on Applications of Computer
Engineering, 2008, pp. 192–197.
- R. Ostermark, A fuzzy vector valued kNN-algorithm for
automatic outlier detection, Appl. Soft Comput., 9 (2009)
1263–1272.
- V. Barnett, T. Lewis, Outliers in Statistical Data, 3rd ed., John
Wiley & Sons, New Jersey, 1994.
- U.S. EPA, Data Quality Assessment: Statistical Methods for
Practitioners, EPA QA/G-9S, 2006.
- K.P. Murphy, A Probabilistic Perspective, The MIT Press,
London, 2012.
- P. Filzmoser, R.G. Garrett, C. Reimann, Multivariate outlier
detection in exploration geochemistry, Comput. Geosci., 31
(2005) 579–587.
- J.D. Jobson, Applied Multivariate Data Analysis, Springer-Verlag, New York, 1992.
- A.C. Rencher, Multivariate Statistical Inference, Wiley, New
York, 1998.
- P.J. Rousseeuw, B.C. van Zomeren, Unmasking multivariate
outliers and leverage points, J. Am. Stat. Assoc., 85 (1990)
633–639.
- D.R. Anderson, D.J. Sweeney, T.W. Williams, Statistics for
Business and Economics, West, Minneapolis/St. Paul, 1993.