References

  1. P.K. Srivastava, S. Mukherjee, M. Gupta, S.K. Singh, Characterizing monsoonal variation on water quality index of River Mahi in India using geographical information system, Water Qual. Exposure Health, 2 (2011) 193–203.
  2. M. Shaban, B. Urban, A. El Saadi, M. Faisal, Detection and mapping of water pollution variation in the Nile Delta using multivariate clustering and GIS techniques, J. Environ. Manage., 91 (2010) 1785–1793.
  3. D.V. Vayenas, S. Pavlou, G. Lyberatos, Development of a dynamic model describing nitritification and nitratification in trickling filters, Water Res., 31 (1997) 1135–1147.
  4. Z. Sharip, A.T.A. Zaki, M.A.H.M. Shapai, S. Suratman, A.J. Shaaban, Lakes of Malaysia: water quality, eutrophication and management, Lakes Reservoirs Res. Manage., 19 (2014) 130–141.
  5. N. Chan, Water Resources Management in Malaysia: NGO Perspectives, Paper Presented During MENGO’s Sustainable Development Conference PWTC, Kuala Lumpur, Malaysia, 9 (2005) 3.
  6. S.A. Muyibi, A.R. Ambali, G.S. Eissa, Development-induced water pollution in Malaysia: policy implications from an econometric analysis, Water Policy, 10 (2008) 193–206.
  7. X.Y. Teh, P.E. Poh, D. Gouwanda, M.N. Chong, Decentralized light greywater treatment using aerobic digestion and hydrogen peroxide disinfection for non-potable reuse, J. Cleaner Prod., 99 (2015) 305–311.
  8. H.A. Hasan, S.R.S. Abdullah, S.K. Kamarudin, N.T. Kofli, Problems of ammonia and manganese in Malaysian drinking water treatments, World Appl. Sci. J., 12 (2011) 1890–1896.
  9. P. Oosterveer, Promoting sustainable palm oil: viewed from a global network and flows perspective, J. Cleaner. Prod., 107 (2015) 146–153.
  10. A. Kushairi, K.L. Soh, I. Azman, E. Hishamuddin, O.-A. Meilina, Z.B.M.N. Izuddin., G. Razmah, S. Shamala., G.K.A. Parveez, Oil palm economic performance in Malaysia and R&D progress in 2017, J. Oil Palm Res., 30 (2018) 163–195.
  11. MPOB, Malaysian Oil Palm Statistics 2017, MPOB Bangi 37th Ed., 2018, 205 p.
  12. M.F. Awalludin, O. Sulaiman, R. Hashim, W.N.A.W. Nadhari, An overview of the oil palm industry in Malaysia and its waste utilization through thermochemical conversion, specifically via liquefaction, Renewable Sustainable Energy Rev., 50 (2015) 1469–1484.
  13. A. Geng, Conversion of Oil Palm Empty Fruit Bunch to Biofuels, School of Life Sciences and Chemical Technology, Ngee Ann Polytechnic, Singapore, 2013.
  14. M.S. Umar, P. Jennings, T. Urmee, Generating renewable energy from oil palm biomass in Malaysia: the feed-in tariff policy framework, Biomass Bioenergy, 62 (2014) 37–46.
  15. N.A. Samiran, M.N.M. Jaafar, J.H. Ng, S.S. Lam, C.T. Chong, Progress in biomass gasification technique – with focus on Malaysian palm biomass for syngas production, Renewable Sustainable Energy Rev., 62 (2016) 1047–1062.
  16. W. Wisawapipat, K. Charoensri, J. Runglerttrakoolchai, Solidphase speciation and solubility of phosphorus in an acid sulfate paddy soil during soil reduction and reoxidation as affected by oil palm ash and biochar, J. Agric. Food. Chem., 65 (2017) 704–710.
  17. H.P.S. Abdul Khalil, M.M. Marliana, T. Alshammari, Material properties of epoxy-reinforced biocomposites with lignin from empty fruit bunch as curing agent, BioResources, 6 (2011) 5206–5223.
  18. H.M. Hamada, G.A. Jokhio, F.M. Yahaya, A.M. Humada, Y. Gul, The present state of the use of palm oil fuel ash (POFA) in concrete, Constr. Build. Mater., 175 (2018) 26–40.
  19. W. Wisawapipat, K. Charoensri, J. Runglerttrakoolchai, Solidphase speciation and solubility of phosphorus in an acid sulfate paddy soil during soil reduction and reoxidation as affected by oil palm ash and biochar, J. Agric. Food. Chem., 65 (2017) 704–710.
  20. M.A. Megat Johari, A.M. Zeyad, N. Muhamad Bunnori, K.S. Ariffin, Engineering and transport properties of highstrength green concrete containing high volume of ultrafine palm oil fuel ash, Constr. Build. Mater., 30 (2012) 281–288.
  21. M.W. Hussin, M.A.R. Bhutta, M. Azreen, P.J. Ramadhansyah, J. Mirza, Performance of blended ash geopolymer concrete at elevated temperatures, Mater. Struct., 48 (2014) 709–720.
  22. K.Y. Foo, B.H. Hameed, Value-added utilization of oil palm ash: A superior recycling of the industrial agricultural waste, J. Hazard. Mater., 172 (2009) 523–531.
  23. T. Ahmad, M. Rafatullah, A. Ghazali, O. Sulaiman, R. Hashim, Oil palm biomass-based adsorbents for the removal of water pollutants—a review, J. Environ. Sci. Health. C Environ. Carcinog. Ecotoxical. Rev., 29 (2011) 177–222.
  24. Z.Z. Chowdhury, S.M. Zain, A.K. Rashid, Equilibrium isotherm modeling, kinetics and thermodynamics study for removal of lead from waste water, E-J. Chem., 8 (2011) 333–339.
  25. M.S.M. Yusof, M.H.D. Othman, A. Mustafa, M.A. Rahman, J. Jaafar, A.F. Ismail, Feasibility study of cadmium adsorption by palm oil fuel ash (POFA)-based low-cost hollow fibre zeolitic membrane, Environ. Sci. Pollut. Res., 25 (2018) 21644–21655.
  26. T.K. Naiya, A.K. Bhattacharya, S.K. Das, Adsorption of Cd(II) and Pb(II) from aqueous solutions on activated alumina, J. Colloid Interface Sci., 333 (2009) 14–26.
  27. O.E.A. Salam, N.A. Reiad, M.M. ElShafei, A study of the removal characteristics of heavy metals from wastewater by low-cost adsorbents, J. Adv. Res., 2 (2011) 297–303.
  28. F.Y. Wang, H. Wang, J.W. Ma, Adsorption of cadmium (II) ions from aqueous solution by a new low-cost adsorbent—Bamboo charcoal, J. Hazard. Mater., 177 (2010) 300–306.
  29. A.S.A. Aziz, L.A. Manaf, H.C. Man, N.S. Kumar, Equilibrium studies and dynamic behavior of cadmium adsorption by palm oil boiler mill fly ash (POFA) as a natural low-cost adsorbent, Desal. Wat. Treat., 54 (2015) 1956–1968.
  30. S.R. Popuri, Y. Vijaya, V.M. Boddu, K. Abburi, Adsorptive removal of copper and nickel ions from water using chitosan coated PVC beads, Bioresour. Technol., 100 (2009) 194–199.
  31. A.R. Mohd, Potensi tanah gambut, batu kapur, zeolit dan karbon tarktif sebagai penjerap komposit untuk merawat larut resapan, Tesis Fakulti Sains Dan Teknologi, Universiti Kebangsaan Malaysia, 2017.
  32. APHA, Standard methods for the examination of water and wastewater, 21st ed., American Public Health Association, Washington D.C., 2005.
  33. A.A. Halim, H.A. Aziz, M.A.M. Johari, K.S. Ariffin, Y.-T. Hung, Removal of ammoniacal nitrogen and COD from semi-aerobic landfill leachate using low-cost activated carbon zeolite composite adsorbent, Int. J. Environ. Waste Manage., 4 (2009) 399.
  34. Y. Zarina, A.M. Al Bakri, H. Kamarudin, I.K. Nizar, A.R. Rafiza, Review on the various ash from palm oil waste as geopolymer material, Rev. Adv. Mater. Sci., 34 (2013) 37–43.
  35. C.C. Chong, N. Abdullah, S.N. Bukhari, N. Ainirazali, L.P. Teh, H.D. Setiabudi, Hydrogen production via CO2 reforming of CH4 over low-cost Ni/SBA-15 from silica-rich palm oil fuel ash (POFA) waste, Int. J. Hydrogen Energy, (2018), https://doi.org/10.1016/j.ijhydene.2018.06.169. (In Press).
  36. N. Jamil, S.M. Khan, N. Ahsan, J. Anwar, A. Qadir, M. Zameer, U. Shafique, Removal of Direct Red 16 (textile dye) from industrial effluent by using feldspar, J. Chem. Soc. Pak., 36 (2014) 191.
  37. Q. Manzoor, R. Nadeem, M. Iqbal, R. Saeed, T.M. Ansari, Organic acids pretreatment effect on Rosa bourbonia phytobiomass for removal of Pb(II) and Cu(II) from aqueous media, Bioresour. Technol., 132 (2013) 446–452.
  38. A.A.A. Latiff, A.O. Adeleke, Z. Daud, M.B. Ridzuan, N. Falilah, Batch adsorption of manganese from palm oil mill effluent onto activated cow bone powder, ARPN J. Eng. Appl. Sci., 11 (2016) 2627–2631.
  39. G.M. Ratnamala, K. Brajesh, Biosorption of remazol navy blue dye from an aqueous solution using pseudomonas putida, Int. J. Sci. Environ. Technol., 2 (2013) 80–89.
  40. C.B. Shivayogimath, N.B. Bhandari, Adsorption studies of paper mill effluent on teakwood sawdust activated carbon, Int. J. Appl. Sci. Eng. Res., 3 (2014) 994–1004.
  41. H. Cho, D. Oh, K. Kim, A study on removal characteristics of heavy metals from aqueous solution by fly ash, J. Hazard. Mater., 127 (2005) 187–195.
  42. A.R. Mohamed, N.F. Zainudin, K.T. Lee, A.H. Kamaruddin, Reactivity of absorbent prepared from oil palm ash for flue gas desulfurization: effect of SO2 concentration and reaction temperature, Stud. Surf. Sci. Catal., 159 (2006) 449–452.
  43. N.F. Zainudin, K.T. Lee, A.H. Kamaruddin, S. Bhatia, A.R. Mohamed, Study of adsorbent prepared from oil palm ash (OPA) for flue gas desulfurization, Sep. Purif. Technol., 45 (2005) 50–60.
  44. C. Chandara, K.A.M. Azizli, Z.A. Ahmad, S.F.S. Hashim, E. Sakai, Analysis of mineralogical component of palm oil fuel ash with or without unburned carbon, Adv. Mater. Res., 173 (2011) 7–11.
  45. M.M. Hanafiah, A.H. Nadheer, S.T. Ahmed, M.A. Ashraf, Removal of chromium from aqueous solutions using a palm kernel shell adsorbent, Desal. Wat. Treat., 118 (2018) 172–180.
  46. N.I.H.A. Aziz, M.M. Hanafiah, M.Y. Ali, Sustainable biogas production from agrowaste and effluents–a promising step for small-scale industry income, Renewable Energy, 132 (2019) 363–369.
  47. I. Hassan, M. Ismail, A.H. Noruzman, T.O. Yusuf, T. Mehmannavaz, J. Usman, Characterization of some key industrial waste products for sustainable concrete production, Adv. Mater. Res., 690–693 (2013) 1091–1094.
  48. I.O. Hassan, M. Ismail, P. Forouzani, Z.A. Majid, J. Mirza, Flow characteristics of ternary blended self-consolidating cement mortars incorporating palm oil fuel ash and pulverised burnt clay, Constr. Build. Mater., 64 (2014) 253–260.