References

  1. J.H. Xie, Simulation for Rivers, Water Conservancy and Electric Power Press, Beijing, 1990.
  2. M. De Vries, Application of Physical and Mathematical Models for River Problems, Delft Hydraulic Laboratory, ISRM, 1973.
  3. B. Lin, On the criterion of similarity of sediment diffusion in distorted models, Yangtze River, 25 (1994) 1–6.
  4. M. Qu, Similarity criteria and modelling techniques of movablebed models for the yellow river, J. Sediment. Res., 3 (1981) 29–42.
  5. W. Li, Preliminary study on vertical velocity distribution of distorted river model, J. Waterw. Harbor, 22 (2001) 113–117.
  6. S. Felder, H. Chanson, Turbulence, dynamic similarity and scale effects in high-velocity free-surface flows above a stepped chute, Exp. Fluids, 47 (2009) 1–18.
  7. F. Murzyn, H. Chanson, Experimental assessment of scale effects affecting two-phase flow properties in hydraulic jumps, Exp. Fluids, 45 (2008) 513–521.
  8. H.B. Fischer, E.R. Holley, Analysis of the use of distorted hydraulic models for dispersion study, Water Resour. Res., 7 (1971) 46–51.
  9. K.J. Carr, A. Ercan, M.L. Kavvas, Scaling and self-similarity of one-dimensional unsteady suspended sediment transport with emphasis on unscaled sediment material properties, J. Hydraul. Eng., 141 (2015) 04015003.
  10. J. Lu, X. Liao, G. Zhao, Experimental study on effects of geometric distortion upon suspended sediments in bending channels, Sediment. Geol., 294 (2013) 27–36.
  11. X. Dou, F. Dong, Effect of distortion ratio on local scour under tidal currents and waves, China Ocean Eng., 18 (2004) 613–628.
  12. X. Dou, The Effects of Distortion Ratios on Tidal Currents, Waves and Sediment Models, Hohai University, 2005.
  13. J. Liu, H. Fang, R. Fu, Use of mathematical model to research scale rate of physical model, J. Hydrodyn., 20 (2005) 132–145.
  14. X. Dou, X. Zhang, H. Qu, Discussion about mathematical modelling applied to distortion ratios, COES, Nanjing, 2007, pp. 419–426.
  15. H. Fang, G. He, J. Liu, M. Chen, 3D numerical investigation of distorted scale in hydraulic physical model experiments, J. Coast. Res., 10052 (2008) 41–54.
  16. G. Ranieri, The surf zone distortion of beach profiles in small–scale coastal models, J. Hydraul. Res., 45 (2007) 261–269.
  17. R. Amdt, P. Roberts, T. Wahl, Hydraulic modeling: concepts and practice, ASCE Manuals and Reports on Engineering Practice, New York, 97 (2000) 390.
  18. W. Huang, Q. Yang, H. Xiao, CFD modeling of scale effects on turbulence flow and scour around bridge piers, Comput. Fluids, 38 (2009) 1050–1058.
  19. S. Gu, L. Ren, X. Wang, H. Xie, Y. Huang, J. Wei, S. Shao, SPHysics simulation of experimental spillway hydraulics, Water, 9 (2017) 973.
  20. C.Z. Chen, S.I. Zhang, J.M. Ma, Influence of distorted model on flow kinematic similitude, Water Resour. Hydropower Eng., 38 (2007) 35–38.
  21. G.H. Keulegan, Laws of turbulent flow in open channels, J. Res. Nat. Bur. Stand., 21 (1938) 707–741.
  22. G. Zhao, P.J. Visser, J. Lu, J.K. Vrijling, Similarity of the velocity profile in geometrically distorted flow model, Flow Meas. Instrum., 32 (2013) 107–110.
  23. И.Л. Rosovsky, X. Yin, Investigation of flow in bend channels, J. Sediment. Res., 1 (1958) 83–95.
  24. Z. Song, The universal formula on transverse circulation in channel bends, J. Sediment. Res., 4 (2003) 19–23.
  25. W. Dai, M. Ding, H. Zhang, On the difference of river resistance computation between the k−ε model and the mixing length model, Water, 10 (2018) 870.
  26. C. Li, D. Jin, Model Test of River Engineering, China Communication Press, Beijing, 1981, 252 p.
  27. Z. Liu, W. Peng, Y. Zare, D. Hui, K.Y. Rhee, Predicting the electrical conductivity in polymer carbon nanotube nanocomposites based on the volume fractions and resistances of the nanoparticle, interphase, and tunneling regions in conductive networks, RSC Adv., 8 (2018) 19001–19010.
  28. T.E. Bell, J.M. Gonzalez-Carballo, R.P. Tooze, L. Torrente-Murciano, High yield manufacturing of gamma-Al2O3 nanorods, ACS Sustainable Chem. Eng., 6 (2018) 88–92.
  29. W. Gao, L. Zhu, Y. Guo, K. Wang, Ontology learning algorithm for similarity measuring and ontology mapping using linear programming, J. Intell. Fuzzy Syst., 33 (2017) 3153–3163.
  30. H.H. Mohamed, N.A. Alomair, Exploiting stored TiO2 Electrons for multi-electron reduction of an azo dye methyl orange in aqueous suspension, J. Saudi Chem. Soc., 22 (2018) 322–328.
  31. P. Szymak, Comparison of fuzzy system with neural aggregation FSNA with classical TSK fuzzy system in anti-collision Problem USV, Polish Marit. Res., 24 (2017) 3–14.
  32. W. Peng, S. Ge, A.G. Ebadi, H. Hisoriev, M.J. Esfahani, Syngas production by catalytic co-gasification of coal-biomass blends in a circulating fluidized bed gasifier, J. Cleaner Prod., 168 (2017) 1513–1517.
  33. M. Sudhakaran, D. Ramamoorthy, V. Savitha, S. Balamurugan, Assessment of trace elements and its influence on physicochemical and biological properties in coastal agroecosystem soil, Puducherry region, Geol. Ecol. Landscapes, 2 (2018) 169–176.
  34. C. Emeh, O. Igwe, Effect of environmental pollution on susceptibility of sesquioxide-rich soils to water erosion, Geol. Ecol. Landscapes, 2 (2018) 115–126.
  35. H. Uddin, A.B.M. Alaama, I.S.M. Zaidul, S.A. Abbas, M. Awang, T.K. Fahim, Current analytical methods for amlodipine and its formulations: a review, J. CleanWAS, 1 (2017) 17–22.
  36. K. Kudus, I. Grasian, S. Madasamy, A. John, Immunomodulatory effect of alginic acid from brown seaweed Sargassum wightii on disease resistance in Penaeus monodon, J. CleanWAS, 1 (2017) 26–29.
  37. M. Afzal, M.A. Rizwan, To assess the trends of living and poverty in a desert climate, Water Conserv. Manage., 1 (2017) 15–18.
  38. G. Yun, S. Williams, D. Wenbin, Water management of the Mekong River, Water Conserv. Manage., 1 (2017) 10–12.