References
- D.I. Mendoza-Castillo, C.K. Rojas-Mayorga, I.P. García-Martínez, M.A. Pérez-Cruz, V. Hernández-Montoya,
A. Bonilla-Petriciolet, M.A. Montes-Morán, Removal of heavy
metals and arsenic from aqueous solution using textile wastes
from denim industry, Int. J. Environ. Sci. Technol., 12 (2015)
1657–1668.
- D.G. Mazumder, B. Mandal, T. Chowdhury, G. Samanta,
G. Basu, P. Chowdhury, C. Chanda, D. Lodh, D. Chakraborti,
Chronic arsenic toxicity in West Bengal, Curr. Sci., 72 (1997)
114–117.
- T. Bahadir, G. Bakan, L. Altas, H. Buyukgungor, The
investigation of lead removal by biosorption: an application
at storage battery industry wastewaters, Enzyme Microb.
Technol., 41 (2007) 98–102.
- M. Bissen, F.H. Frimmel, Arsenic — a review. Part II: Oxidation
of arsenic and its removal in water treatment, Acta Hydrochim.
Hydrobiol., 31 (2003) 97–107.
- R.Y. Ning, Arsenic removal by reverse osmosis. Desalination,
143 (2002) 237–241.
- P. Ratna Kumar, S. Chaudhari, K.C. Khilar, S.P. Mahajan,
Removal of arsenic from water by electrocoagulation,
Chemosphere, 55 (2004) 1245–1252.
- T.M. Gihring, G.K. Druschel, R.B. McCleskey, R.J. Hamers,
J.F. Banfield, Rapid arsenite oxidation by Thermus aquaticus and Thermus thermophilus: field and laboratory investigations,
Environ. Sci. Technol., 35 (2001) 3857–3862.
- J. Kim, M.M. Benjamin, Modeling a novel ion exchange process
for arsenic and nitrate removal, Water Res., 38 (2004) 2053–2062.
- S. Ye, G. Zeng, H. Wu, C. Zhang, J. Dai, J. Liang, J. Yu, X. Ren,
H. Yi, M. Cheng, C. Zhang, Biological technologies for the
remediation of co-contaminated soil, Crit. Rev. Biotechnol.,
37 (2017) 1062–1076.
- S. Ye, G. Zeng, H. Wu, C. Zhang, J. Liang, J. Dai, Z. Liu, W.
Xiong, J. Wan, P. Xu,. M. Cheng, Co-occurrence and interactions
of pollutants, and their impacts on soil remediation—a review,
Crit. Rev. Environ. Sci. Technol., 47 (2017) 1528–1553.
- H. Wu, C. Lai, G. Zeng, J. Liang, J. Chen, J. Xu, J. Dai, X. Li, J. Liu,
M. Chen, L. Lu, L. Hu, J. Wan, The interactions of composting
and biochar and their implications for soil amendment and
pollution remediation: a review, Crit. Rev. Biotechnol., 37 (2017)
754–764.
- E. Lourie, E. Gjengedal, Metal sorption by peat and algae treated
peat: kinetics and factors affecting the process, Chemosphere,
85 (2011) 759–764.
- J.P. Chen, Wu, Acid/base-treated activated carbons:
characterization of functional groups and metal adsorptive
properties, Langmuir, 20 (2004) 2233–2242.
- J.U.K. Oubagaranadin, Z.V.P. Murthy, Isotherm modeling and
batch adsorber design for the adsorption of Cu(II) on a clay
containing montmorillonite, Appl. Clay Sci., 50 (2010) 409–413.
- V.K. Gupta, A. Rastogi, V.K. Saini, N. Jain, Biosorption of
copper(II) from aqueous solutions by Spirogyra species,
J. Colloid Interface Sci., 296 (2006) 59–63.
- K. Yetilmezsoy, S. Demirel, Artificial neural network (ANN)
approach for modeling of Pb(II) adsorption from aqueous
solution by Antep pistachio (Pistacia Vera L.) shells, J. Hazard.
Mater., 153 (2008) 1288–1300.
- R.K. Ibrahim, M. Hayyan, M.A. AlSaadi, A. Hayyan, S. Ibrahim,
Environmental application of nanotechnology: air, soil, and
water, Environ. Sci. Pollut. Res., 23 (2016) 13754–13788.
- Ihsanullah, A. Abbas, A.M. Al-Amer, T. Laoui, M.J. Al-Marri,
M.S. Nasser, M. Khraisheh, M.A. Atieh, Heavy metal removal
from aqueous solution by advanced carbon nanotubes:
critical review of adsorption applications, Sep. Purif. Technol.,
157 (2016) 141–161.
- M.K. AlOmar, M.A. Alsaadi, M. Hayyan, S. Akib, M.A. Hashim,
Functionalization of CNTs surface with phosphonuim based
deep eutectic solvents for arsenic removal from water, Appl.
Surf. Sci., 389 (2016) 216–226.
- A.P. Abbott, G. Capper, D.L. Davies, R.K. Rasheed,
V. Tambyrajah, Novel solvent properties of choline chloride/urea mixtures, Chem. Commun., 9 (2003) 70–71.
- M.K. AlOmar, M. Hayyan, M.A. Alsaadi, S. Akib, A. Hayyan,
M.A. Hashim, Glycerol-based deep eutectic solvents: physical
properties, J. Mol. Liq., 215 (2016) 98–103.
- A,P. Abbott, K. El Ttaib, G. Frisch, K.J. McKenzie, K.S. Ryder,
Electrodeposition of copper composites from deep eutectic
solvents based on choline chloride, Phys. Chem. Chem. Phys.,
11 (2009) 4269–4277.
- M.K. AlOmar, M.A. Alsaadi, M. Hayyan, S. Akib, M. Ibrahim,
M.A. Hashim, Allyl triphenyl phosphonium bromide based
DES-functionalized carbon nanotubes for the removal of
mercury from water, Chemosphere, 167 (2017) 44–52.
- A.P. Abbott, D. Boothby, G. Capper, D.L. Davies, R.K. Rasheed,
Deep eutectic solvents formed between choline chloride and
carboxylic acids: versatile alternatives to ionic liquids, J. Am.
Chem. Soc., 126 (2004) 9142–9147.
- M.K. AlOmar, M.A. Alsaadi, M. Hayyan, S. Akib, R.K. Ibrahim,
M.A. Hashim, Lead removal from water by choline chloride
based deep eutectic solvents functionalized carbon nanotubes,
J. Mol. Liq., 222 (2016) 883–894.
- S. Mandal, P.V. Sivaprasad, S. Venugopal, K.P.N. Murthy,
Artificial neural network modeling to evaluate and predict the
deformation behavior of stainless steel type AISI 304L during
hot torsion, Appl. Soft Comput., 9 (2009) 237–244.
- O.K. Chibole, Modeling River Sosiani’s water quality to assess
human impact on water resources at the catchment scale,
Ecohydrol. Hydrobiol., 13 (2013) 241–245.
- A.H. El-Shafie, M.S. El-Manadely, An integrated neural network
stochastic dynamic programming model for optimizing the
operation policy of Aswan High Dam, Hydrol. Res., 42 (2011)
50–67.
- A. El-Shafie, M.R. Taha, A. Noureldin, A neuro-fuzzy model for
inflow forecasting of the Nile river at Aswan high dam, Water
Resour. Manage., 21 (2007) 533–556.
- E.H. Mamdani, S. Assilian, An experiment in linguistic synthesis
with a fuzzy logic controller, Int. J. Man. Mach. Stud., 7 (1975)
1–13.
- T. Takagi, M. Sugeno, Fuzzy identification of systems and its
applications to modeling and control, IEEE Trans. Syst. Man
Cybern., SMC-15 (1985) 116–132.
- J.-S.R. Jang, C.-T. Sun, E. Mizutani, Neuro-fuzzy and soft
computing; a computational approach to learning and machine
intelligence, 1997.
- A. Salisu, M.M. Sanagi, A. Abu Naim, W.A. Wan Ibrahim, K.J.
Abd Karim, Removal of lead ions from aqueous solutions using
sodium alginate-graft-poly(methyl methacrylate) beads, Desal.
Wat. Treat., 57 (2016) 15353–15361.
- V.K. Gupta, S. Agarwal, T.A. Saleh, Synthesis and
characterization of alumina-coated carbon nanotubes and
their application for lead removal, J. Hazard. Mater., 185 (2011)
17–23.
- A. Banerjee, P. Sarkar, S. Banerjee, Application of statistical
design of experiments for optimization of As (V) biosorption by
immobilized bacterial biomass, Ecol. Eng., 86 (2016) 13–23.
- B. Das, N. Mondal, R. Bhaumik, P. Roy, Insight into adsorption
equilibrium, kinetics and thermodynamics of lead onto alluvial
soil, Int. J. Environ. Sci. Technol., 11 (2014)1101–1114.
- P. Geetha, M.S. Latha, S.S. Pillai, M. Koshy, Nanoalginate based
biosorbent for the removal of lead ions from aqueous solutions:
equilibrium and kinetic studies, Ecotoxicol. Environ. Saf.,
122 (2015) 17–23.