References

  1. D.I. Mendoza-Castillo, C.K. Rojas-Mayorga, I.P. García-Martínez, M.A. Pérez-Cruz, V. Hernández-Montoya, A. Bonilla-Petriciolet, M.A. Montes-Morán, Removal of heavy metals and arsenic from aqueous solution using textile wastes from denim industry, Int. J. Environ. Sci. Technol., 12 (2015) 1657–1668.
  2. D.G. Mazumder, B. Mandal, T. Chowdhury, G. Samanta, G. Basu, P. Chowdhury, C. Chanda, D. Lodh, D. Chakraborti, Chronic arsenic toxicity in West Bengal, Curr. Sci., 72 (1997) 114–117.
  3. T. Bahadir, G. Bakan, L. Altas, H. Buyukgungor, The investigation of lead removal by biosorption: an application at storage battery industry wastewaters, Enzyme Microb. Technol., 41 (2007) 98–102.
  4. M. Bissen, F.H. Frimmel, Arsenic — a review. Part II: Oxidation of arsenic and its removal in water treatment, Acta Hydrochim. Hydrobiol., 31 (2003) 97–107.
  5. R.Y. Ning, Arsenic removal by reverse osmosis. Desalination, 143 (2002) 237–241.
  6. P. Ratna Kumar, S. Chaudhari, K.C. Khilar, S.P. Mahajan, Removal of arsenic from water by electrocoagulation, Chemosphere, 55 (2004) 1245–1252.
  7. T.M. Gihring, G.K. Druschel, R.B. McCleskey, R.J. Hamers, J.F. Banfield, Rapid arsenite oxidation by Thermus aquaticus and Thermus thermophilus: field and laboratory investigations, Environ. Sci. Technol., 35 (2001) 3857–3862.
  8. J. Kim, M.M. Benjamin, Modeling a novel ion exchange process for arsenic and nitrate removal, Water Res., 38 (2004) 2053–2062.
  9. S. Ye, G. Zeng, H. Wu, C. Zhang, J. Dai, J. Liang, J. Yu, X. Ren, H. Yi, M. Cheng, C. Zhang, Biological technologies for the remediation of co-contaminated soil, Crit. Rev. Biotechnol., 37 (2017) 1062–1076.
  10. S. Ye, G. Zeng, H. Wu, C. Zhang, J. Liang, J. Dai, Z. Liu, W. Xiong, J. Wan, P. Xu,. M. Cheng, Co-occurrence and interactions of pollutants, and their impacts on soil remediation—a review, Crit. Rev. Environ. Sci. Technol., 47 (2017) 1528–1553.
  11. H. Wu, C. Lai, G. Zeng, J. Liang, J. Chen, J. Xu, J. Dai, X. Li, J. Liu, M. Chen, L. Lu, L. Hu, J. Wan, The interactions of composting and biochar and their implications for soil amendment and pollution remediation: a review, Crit. Rev. Biotechnol., 37 (2017) 754–764.
  12. E. Lourie, E. Gjengedal, Metal sorption by peat and algae treated peat: kinetics and factors affecting the process, Chemosphere, 85 (2011) 759–764.
  13. J.P. Chen, Wu, Acid/base-treated activated carbons: characterization of functional groups and metal adsorptive properties, Langmuir, 20 (2004) 2233–2242.
  14. J.U.K. Oubagaranadin, Z.V.P. Murthy, Isotherm modeling and batch adsorber design for the adsorption of Cu(II) on a clay containing montmorillonite, Appl. Clay Sci., 50 (2010) 409–413.
  15. V.K. Gupta, A. Rastogi, V.K. Saini, N. Jain, Biosorption of copper(II) from aqueous solutions by Spirogyra species, J. Colloid Interface Sci., 296 (2006) 59–63.
  16. K. Yetilmezsoy, S. Demirel, Artificial neural network (ANN) approach for modeling of Pb(II) adsorption from aqueous solution by Antep pistachio (Pistacia Vera L.) shells, J. Hazard. Mater., 153 (2008) 1288–1300.
  17. R.K. Ibrahim, M. Hayyan, M.A. AlSaadi, A. Hayyan, S. Ibrahim, Environmental application of nanotechnology: air, soil, and water, Environ. Sci. Pollut. Res., 23 (2016) 13754–13788.
  18. Ihsanullah, A. Abbas, A.M. Al-Amer, T. Laoui, M.J. Al-Marri, M.S. Nasser, M. Khraisheh, M.A. Atieh, Heavy metal removal from aqueous solution by advanced carbon nanotubes: critical review of adsorption applications, Sep. Purif. Technol., 157 (2016) 141–161.
  19. M.K. AlOmar, M.A. Alsaadi, M. Hayyan, S. Akib, M.A. Hashim, Functionalization of CNTs surface with phosphonuim based deep eutectic solvents for arsenic removal from water, Appl. Surf. Sci., 389 (2016) 216–226.
  20. A.P. Abbott, G. Capper, D.L. Davies, R.K. Rasheed, V. Tambyrajah, Novel solvent properties of choline chloride/urea mixtures, Chem. Commun., 9 (2003) 70–71.
  21. M.K. AlOmar, M. Hayyan, M.A. Alsaadi, S. Akib, A. Hayyan, M.A. Hashim, Glycerol-based deep eutectic solvents: physical properties, J. Mol. Liq., 215 (2016) 98–103.
  22. A,P. Abbott, K. El Ttaib, G. Frisch, K.J. McKenzie, K.S. Ryder, Electrodeposition of copper composites from deep eutectic solvents based on choline chloride, Phys. Chem. Chem. Phys., 11 (2009) 4269–4277.
  23. M.K. AlOmar, M.A. Alsaadi, M. Hayyan, S. Akib, M. Ibrahim, M.A. Hashim, Allyl triphenyl phosphonium bromide based DES-functionalized carbon nanotubes for the removal of mercury from water, Chemosphere, 167 (2017) 44–52.
  24. A.P. Abbott, D. Boothby, G. Capper, D.L. Davies, R.K. Rasheed, Deep eutectic solvents formed between choline chloride and carboxylic acids: versatile alternatives to ionic liquids, J. Am. Chem. Soc., 126 (2004) 9142–9147.
  25. M.K. AlOmar, M.A. Alsaadi, M. Hayyan, S. Akib, R.K. Ibrahim, M.A. Hashim, Lead removal from water by choline chloride based deep eutectic solvents functionalized carbon nanotubes, J. Mol. Liq., 222 (2016) 883–894.
  26. S. Mandal, P.V. Sivaprasad, S. Venugopal, K.P.N. Murthy, Artificial neural network modeling to evaluate and predict the deformation behavior of stainless steel type AISI 304L during hot torsion, Appl. Soft Comput., 9 (2009) 237–244.
  27. O.K. Chibole, Modeling River Sosiani’s water quality to assess human impact on water resources at the catchment scale, Ecohydrol. Hydrobiol., 13 (2013) 241–245.
  28. A.H. El-Shafie, M.S. El-Manadely, An integrated neural network stochastic dynamic programming model for optimizing the operation policy of Aswan High Dam, Hydrol. Res., 42 (2011) 50–67.
  29. A. El-Shafie, M.R. Taha, A. Noureldin, A neuro-fuzzy model for inflow forecasting of the Nile river at Aswan high dam, Water Resour. Manage., 21 (2007) 533–556.
  30. E.H. Mamdani, S. Assilian, An experiment in linguistic synthesis with a fuzzy logic controller, Int. J. Man. Mach. Stud., 7 (1975) 1–13.
  31. T. Takagi, M. Sugeno, Fuzzy identification of systems and its applications to modeling and control, IEEE Trans. Syst. Man Cybern., SMC-15 (1985) 116–132.
  32. J.-S.R. Jang, C.-T. Sun, E. Mizutani, Neuro-fuzzy and soft computing; a computational approach to learning and machine intelligence, 1997.
  33. A. Salisu, M.M. Sanagi, A. Abu Naim, W.A. Wan Ibrahim, K.J. Abd Karim, Removal of lead ions from aqueous solutions using sodium alginate-graft-poly(methyl methacrylate) beads, Desal. Wat. Treat., 57 (2016) 15353–15361.
  34. V.K. Gupta, S. Agarwal, T.A. Saleh, Synthesis and characterization of alumina-coated carbon nanotubes and their application for lead removal, J. Hazard. Mater., 185 (2011) 17–23.
  35. A. Banerjee, P. Sarkar, S. Banerjee, Application of statistical design of experiments for optimization of As (V) biosorption by immobilized bacterial biomass, Ecol. Eng., 86 (2016) 13–23.
  36. B. Das, N. Mondal, R. Bhaumik, P. Roy, Insight into adsorption equilibrium, kinetics and thermodynamics of lead onto alluvial soil, Int. J. Environ. Sci. Technol., 11 (2014)1101–1114.
  37. P. Geetha, M.S. Latha, S.S. Pillai, M. Koshy, Nanoalginate based biosorbent for the removal of lead ions from aqueous solutions: equilibrium and kinetic studies, Ecotoxicol. Environ. Saf., 122 (2015) 17–23.