References
- D. Mantzavinos, E. Psillakis, Enhancement of biodegradability
of industrial wastewaters by chemical oxidation pre-treatment,
J. Chem. Technol. Biotechnol., 79 (2004) 431–454.
- M.R. Hoffmann, S.T. Martin, W. Choi, D.W. Bahnemann,
Environmental applications of semiconductor photocatalysis,
Chem. Rev., 95 (1995) 69–96.
- O. Legrini, E. Oliveros, A.M. Braun, Photochemical processes
for water-treatment, Chem. Rev., 93 (1993) 671–698.
- U.M. Nascimento, E.B. Azevedo, Microwaves and their coupling
to advanced oxidation processes: enhanced performance in
pollutants degradation, J. Environ. Sci. Health, A: Toxic/Haz.
Subst. Environ. Eng., 48 (2013) 1056–1072.
- A.C. Rodrigues, M. Boroski, N.S. Shimada, J.C.G. Garcia, J.
Nozaki, Treatment of paper pulp and paper mill wastewater
by coagulation-flocculation followed by heterogeneous
photocatalysis, J. Photochem. Photobiol., A., 194 (2008) 1–10.
- A.L. Linsebigler, G. Lu, J.T. Yates Jr., Photocatalysis on TiO2
surfaces: principles, mechanisms, and selected results, Chem.
Rev., 95 (1995) 735–758.
- L. Ciccotti, L.A.S. Vale, T.L.R. Hewer, R.S. Freire, Fe3O4@TiO2 preparation and catalytic activity in heterogeneous
photocatalytic and ozonation processes, Catal. Sci. Technol., 5
(2015) 1143–1152.
- K.H. Choi, S.L. Oh, J.H. Jung, J.S. Jung, Efficiently recyclable
magnetic core-shell photocatalyst for photocatalytic oxidation
of chlorophenol in water, J. Appl. Phys., 111 (2012) 07B504.
- S. Xuan, W. Jiang, X. Gong, Y. Hu, Z. Chen, Magnetically
separable Fe3O4/TiO2 hollow spheres: fabrication and
photocatalytic activity, J. Phys. Chem. C, 113 (2009) 553–558.
- S. Kurinobu, K. Tsurusaki, Y. Natui, M. Kimata, M. Hasegawa,
Decomposition of pollutants in wastewater using magnetic
photocatalyst particles, J. Magn. Magn. Mater., 310 (2007)
e1025–e1027.
- Z.D. Li, H.L. Wang, X.N. Wei, X.Y. Liu, Y.F. Yang, W.F. Jiang,
Preparation and photocatalytic performance of magnetic
Fe3O4@TiO2 core-shell microspheres supported by silica
aerogels from industrial fly ash, J. Alloys Compd., 659 (2016)
240–247.
- Y. Chen, T. Yuan, F. Wang, J. Hu, W. Tu, Magnetically separable
Fe3O4@TiO2 nanospheres: preparation and photocatalytic
activity, J. Mater. Sci. Mater. Electron., 27 (2016) 9983–9988.
- H. Arora, A. Wu, J. Boyle, T. Paunesku, G. Woloschak,
Conjugation to Fe3O4@TiO2 nanoparticles increases uptake and
nuclear localization of doxorubicin in a drug-resistant ovarian
carcinoma model, Int. J. Radiat. Oncol. Biol. Phys., 75 (2009)
S564–S565.
- Q. He, Z. Zhang, J. Xiong, Y. Xiong, H. Xiao, A novel biomaterial
— Fe3O4:TiO2 core-shell nano particle with magnetic
performance and high visible light photocatalytic activity, Opt.
Mater., 31 (2008) 380–384.
- W.J. Chen, P.J. Tsai, Y.C. Chen, Functional Fe3O4/TiO2 core/shell
magnetic nanoparticles as photokilling agents for pathogenic
bacteria, Small, 4 (2008) 485–491.
- X.P. Wu, X. Zhong, Y.Q. Chai, R. Yuan, Electrochemiluminescence
acetylcholine biosensor based on biofunctional AMs-AChEChO
biocomposite and electrodeposited graphene-Au-chitosan
nanocomposite, Electrochim. Acta, 147 (2014) 735–742.
- W.F. Ma, Y. Zhang, L.L. Li, L.J. You, P. Zhang, Y.T. Zhang, J.M.
Li, M. Yu, J. Guo, H.J. Lu, C.C. Wang, Tailor-made magnetic
Fe3O4@TiO2 microspheres with a tunable mesoporous
anatase shell for highly selective and effective enrichment of
phosphopeptides, ACS Nano, 6 (2012) 3179–3188.
- Y. Li, X. Xu, D. Qi, C. Deng, P. Yang, X. Zhang, Novel Fe3O4@TiO2 core-shell microspheres for selective enrichment of
phosphopeptides in phosphoproteome analysis, J. Proteome.
Res., 7 (2008) 2526–2538.
- V. Elhami, A. Karimi, M. Aghbolaghy, Preparation of
heterogeneous bio-Fenton catalyst for decolorization of
Malachite Green, J. Taiwan. Inst. Chem. Eng., 56 (2015)
154–159.
- J. Sánches-martín, J. Beltrán-heredia, M.T. Rodríguez-sánchez,
Removal of erioglaucine (Acid Blue 9) with a new coagulant
agent from Acacia mearnsii tannin extract, Coloration. Technol.,
128 (2012) 15–20.
- A.R. Khataee, H. Aleboyeh, A. Aleboyeh, Crystallite phasecontrolled
preparation, characterisation and photocatalytic
properties of titanium dioxide nanoparticles, J. Exp. Nanosci.,
4 (2009) 121–137.
- T. Gessner, U. Mayer In: ULLMANN’S Encyclopedia of
Industrial Chemistry. 6th ed., Wiley-VCH: New York, 2001.
Triarylmethane and diarylmethane dyes, p. 425–471.
- B. Shahmoradi, A. Maleki, K. Byrappa, Photocatalytic
degradation of Amaranth and Brilliant Blue FCF dyes using in
situ modified tungsten doped TiO2 hybrid nanoparticles, Catal.
Sci. Technol., 1 (2011) 1216–1233.
- A.R. Auxilio, P.C. Andrews, P.C. Junk, L. Spiccia, The adsorption
behavior of C.I. Acid Blue 9 onto calcined Mg–Al layered double
hydroxides, Dyes. Pigm., 81 (2009) 103–112.
- J.P. Groten, W. Butler, V.J. Feron, G. Kozianowski, A.C. Renwick,
R. Walker, An analysis of the possibility for health implications
of joint actions and interactions between food additives, Regul.
Toxicol. Pharmacol., 31 (2000) 77–91.
- M. Flury, H. Flühler, Tracer characteristics of Brilliant Blue FCF,
Soil. Sci. Soc. Am. J., 59 (1995) 22–27.
- R. Jain, S. Sikarwar, Photodestruction and COD removal of toxic
dye erioglaucine by TiO2-UV process: influence of operational
parameters, Int. J. Phys. Sci., 3 (2008) 299–305.
- M.M. Alsolaiman, L. Howard, FD&C blue dye no. 1 and blue
nail discoloration: case report, Nutrition, 19 (2003) 395–396.
- W.H. Hansen, O.G. Fitzhugh, A.A. Nelson, K.J. Davis, Chronic
toxicity of two food colors, Brilliant Blue FCF and Indigotine,
Toxicol. Appl. Pharmacol., 8 (1966) 29–36.
- M. Ozaki, S. Kratohvil, E. Matijevic, Formation of monodispersed
spindle-type hematite particles, J. Colloid. Interface. Sci., 102
(1984) 146–151.
- C.M. Flynn Jr., Hydrolysis of inorganic iron (III) salts, Chem.
Rev., 84 (1984) 31–41.
- L.C. Varanda, M. Jafelicci Jr, P. Tartaj, K.O. Grady, T. Gonzalezcarreño,
M.P. Morales, T. Muñoz, C.J. Serna, Structural and
magnetic transformation of monodispersed iron oxide particles
in a reducing atmosphere, J. Appl. Phys., 92 (2002) 2079–2085.
- L.C. Varanda, M. Jafelicci Jr, G.F. Goya, Magnetic properties
of spindle-type iron fine particles obtained from hematite, J.
Magn. Magn. Mater., 226 (2001) 1933–1935.
- P. Gherardi, E. Matijevic, Interactions of precipitated hematite
with preformed colloidal titania dispersions, J. Colloid. Interface
Sci., 109 (1986) 57–68.
- X.W. Lou, L.A. Archer, A general route to nonspherical anatase
TiO2 hollow colloids and magnetic multifunctional particles,
Adv. Mater., 20 (2008) 1853–1858.
- J. Sun, L. Gao, pH effect on titania-phase transformation of
precipitates from titanium tetrachloride solutions, J. Am.
Ceram. Soc., 85 (2002) 2382–2384.
- H.M. Song, J.M. Ko, J.H. Park, Hybrid photoreactive magnet
obtained from Fe3O4/TiO2 composite nanoparticles, Chem. Lett.,
38 (2009) 612–613.
- IUPAC. The IUPAC Gold Book. Created by Nic M, Jirat J,
Kosata B. Updates compiled by Jenkins A, Available at: http://goldbook.iupac.org (Accessed in 20 Aug 2014).
- E.P. Barrett, L.G. Joyner, P.P. Halenda, The determination of
pore volume and area distributions in porous substances, I.
computations from nitrogen isotherms, J. Am. Chem. Soc., 73
(1951) 373–380.
- B.D. Cullity, C.D. Graham, Introduction to Magnetic Materials,
Addison Wesley: London, 2009.
- G.F. Goya, T.S. Berquo, F.C. Fonseca, M.P. Morales, Static
and dynamic magnetic properties of spherical magnetite
nanoparticles, J. Appl. Phys., 94 (2003) 3520–3528.
- B. Barros Neto, I.S. Scarminio, R.E. Bruns. Statistical Design:
Chemometrics. Amsterdam: Elsevier B.V; 2006.
- L. Cromières, V. Moulin, B. Fourest, E. Giffaut, Physicalchemical
characterization of the colloidal hematite/water
interface: experimentation and modeling, Coll. Surf., A., 202
(2002) 101–115.
- M. Baalousha, Aggregation and disaggregation of iron
oxide nanoparticles: influence of particle concentration, pH
and natural organic matter, Sci., Total. Environ., 407 (2009)
2093–2101.
- S. Al-sayari, A.F. Carley, S.H. Taylor, G.J. Hutching, Au/ZnO and Au/Fe2O3 catalysts for CO oxidation at ambient
temperature: comments on the effect of synthesis conditions
on the preparation of high activity catalysts prepared by
coprecipitation, Top. Catal., 44 (2007) 123–128.
- Z. Zhong, J. Ho, J. Teo, S. Shen, A. Gedanken, Synthesis of
porous α-Fe2O3 nanorods and deposition of very small gold
particles in the pores for catalytic oxidation of CO, Chem.
Mater., 19 (2007) 4776–4782.
- A.H. Lu, E.L. Slabas, F. Schuth, Magnetic nanoparticles:
synthesis, protection, functionalization, and application,
Angew. Chem. Int. Ed. Engl., 46 (2007) 1222–1244.
- J.P. Jolivet, De la solution à l’oxyde: condensation des cations en
solution aqueuse. Chimie de surface des oxyde, Inter Éditions/CNRS Éditions, Paris, 1994.
- C.L. Zhu, M.L. Zhang, Y.J. Qiao, G. Xiao, F. Zhang, Y.J. Che,
Fe3O4/TiO2 core/shell nanotubes: synthesis and magnetic and
electromagnetic wave absorption characteristics, J. Phys. Chem.
C, 14 (2010) 16229–16235.
- H. Lee, E. Lee, D.K. Kim, N.K. Jang, Y.Y. Jeong, S. Jon,
Antibiofouling polymer-coated superparamagnetic iron oxide
nanoparticles as potential magnetic resonance contrast agents
for in vivo cancer imaging, J. Am. Chem. Soc., 128 (2006)
7383–7389.
- T. Sugimoto, K. Sakata, A. Muramatsu, Formation mechanism
of monodisperse pseudocubic α-Fe2O3 particles from condensed
ferric hydroxide gel, J. Colloid. Interface Sci., 159 (1993) 372–382.