References

  1. H. Mubarak, L.Y. Chai, N. Mirza, Z.H. Yang, A. Pervez, M. Tariq, S. Shaheen, Q. Mahmood, Antimony (Sb) - pollution and removal techniques - critical assessment of technologies, Toxicol. Environ. Chem., 97 (2015) 1296–1318.
  2. Y.Y. Miao, F.C. Han, B.C. Pan, Y.J. Niu, G.Z. Nie, L. Lv, Antimony(V) removal from water by hydrated ferric oxides supported by calcite sand and polymeric anion exchanger, J. Environ. Sci.-China, 26 (2014) 307–314.
  3. M.A. Salam, R.M. Mohamed, Removal of antimony (III) by multi-walled carbon nanotubes from model solution and environmental samples, Chem. Eng. Res. Des., 91 (2013) 1352–1360.
  4. M. Perry, S. Wyllie, V. Prajapati, J. Menten, A. Raab, J. Feldmann, D. Chakraborti, S. Sundar, M. Boelaert, A. Picado, A. Fairlamb, Arsenic, antimony, and Leishmania: has arsenic contamination of drinking water in India led to treatment-resistant kala-azar?, Lancet, 385 (2015) 80–80.
  5. R. Cidu, R. Biddau, E. Dore, A. Vacca, L. Marini, Antimony in the soil-water-plant system at the Su Suergiu abandoned mine (Sardinia, Italy): strategies to mitigate contamination, Sci. Total Environ., 497 (2014) 319–331.
  6. E. Chmielewska, W. Tylus, M. Drabik, J. Majzlan, J. Kravcak, C. Williams, M. Caplovicova, L. Caplovic, Structure investigation of nano-FeO(OH) modified clinoptilolite tuff for antimony removal, Micropor. Mesopor. Mater., 248 (2017) 222–233.
  7. S. Ogawa, M. Katoh, T. Sato, Contribution of hydroxyapatite and ferrihydrite in combined applications for the removal of lead and antimony from aqueous solutions, Water Air Soil Pollut., 225 (2014).
  8. X.Y. He, X.B. Min, X.B.A. Luo, Efficient removal of antimony (III, V) from contaminated water by amino modification of a zirconium metal-organic framework with mechanism study, J. Chem. Eng. Data, 62 (2017) 1519–1529.
  9. B.W. Ma, X. Wang, R.P. Liu, Z.L. Qi, W.A. Jefferson, H.C. Lan, H.J. Liu, J.H. Qu, Enhanced antimony(V) removal using synergistic effects of Fe hydrolytic flocs and ultrafiltration membrane with sludge discharge evaluation, Water Res., 121 (2017) 171–177.
  10. M. Katoh, K. Hashimoto, T. Sato, Lead and antimony removal from contaminated soil by phytoremediation combined with an immobilization material, Clean-Soil Air Water, 44 (2016) 1717–1724.
  11. C.Y. Xiong, T.H. Li, A.L. Dang, T.K. Zhao, H. Li, H.Q. Lv, Two-step approach of fabrication of three-dimensional MnO2-graphene-carbon nanotube hybrid as a binder-free supercapacitor electrode, J. Power Sources, 306 (2016) 602–610.
  12. X. Du, F.S. Qu, H. Liang, K. Li, H.R. Yu, L.M. Bai, G.B. Li, Removal of antimony (III) from polluted surface water using a hybrid coagulation-flocculation-ultrafiltration (CF-UF) process, Chem. Eng. J., 254 (2014) 293–301.
  13. X.Z. Yang, T.Z. Zhou, B.Z. Ren, Z. Shi, A. Hursthouse, Synthesis, Characterization, and adsorptive properties of Fe3O4/GO nanocomposites for antimony removal, J. Anal. Methods Chem., 2017.
  14. J. Ilavsky, D. Barlokova, P. Hudec, K. Munka, Iron-based sorption materials for the removal of antimony from water, J. Water Supply Res. Technol. Aqua, 63 (2014) 518–524.
  15. B. Verbinnen, C. Block, P. Lievens, A. Van Brecht, C. Vandecasteele, Simultaneous removal of molybdenum, antimony and selenium oxyanions from wastewater by adsorption on supported magnetite, Waste Biomass Valorization, 4 (2013) 635–645.
  16. Z.L. Qi, T.P. Joshi, R.P. Liu, H.J. Liu, J.H. Qu, Synthesis of Ce(III)-doped Fe3O4 magnetic particles for efficient removal of antimony from aqueous solution, J. Hazard. Mater., 329 (2017) 193–204.
  17. J. Ilavsky, D. Barlokova, K. Munka, The Use of iron-based sorption materials and magnetic fields for the removal of antimony from water, Pol. J. Environ. Stud., 24 (2015) 1983–1992.
  18. T. Huang, L.F. Liu, L.L. Zhou, K. Yang, Operating optimization for the heavy metal removal from the municipal solid waste incineration fly ashes in the three-dimensional Chock tar electrokinetics, Chemosphere, 204 (2018) 294–302.
  19. T. Huang, L.F. Liu, L.L. Zhou, S.W. Zhang, Electrokinetic removal of chromium from chromite ore-processing residue using graphite particle-supported nanoscale zero-valent iron as the three-dimensional electrode, Chem. Eng. J., 350 (2018) 1022–1034.
  20. T. Huang, L.L. Zhou, L.F. Liu, M. Xia, Ultrasound-enhanced electrokinetic remediation for removal of Zn, Pb, Cu and Cd in municipal solid waste incineration fly ashes, Waste Manage., 75 (2018) 226–235.
  21. T. Huang, Q.K. Peng, L. Yu, D.W. Li, The Detoxification of heavy metals in the phosphate tailing-contaminated soil through sequential microbial pretreatment and electrokinetic remediation, Soil Sediment Contam., 26 (2017) 308–322.
  22. D.W. Li, T. Huang, K.X. Liu, Near-anode focusing phenomenon caused by the coupling effect of early precipitation and backward electromigration in electrokinetic remediation of MSWI fly ashes, Environ. Technol., 37 (2016) 216–227.
  23. T. Huang, D.W. Li, K.X. Liu, Y.W. Zhang, Heavy metal removal from MSWI fly ash by electrokinetic remediation coupled with a permeable activated charcoal reactive barrier, Sci. Rep., 5 (2015).
  24. K.X. Liu, T. Huang, X. Huang, L. Yu, F. Muhammad, B.Q. Jiao, D.W. Li, The application of homemade Neosinocalamus affinis AC in electrokinetic removal technology on heavy metal removal from the MSWI fly ash, Sci. Rep., 6 (2016).
  25. T. Huang, L.F. Liu, J.J. Tao, L.L. Zhou, S.W. Zhang, Microbial fuel cells coupling with the three-dimensional electro-Fenton technique enhances the degradation of methyl orange in the wastewater, Environ. Sci. Pollut. Res. Int., 25 (2018) 17989–18000.
  26. L. Wang, J.Y. Wang, Z.X. Wang, C. He, W. Lyu, W. Yan, L. Yang, Enhanced antimonate (Sb(V)) removal from aqueous solution by La-doped magnetic biochars, Chem. Eng. J., 354 (2018) 623–632.
  27. K.L. Yang, J.S. Zhou, Z.M. Lou, X.R. Zhou, Y.L. Liu, Y.Z. Li, S.A. Baig, X.H. Xu, Removal of Sb(V) from aqueous solutions using Fe-Mn binary oxides: the influence of iron oxides forms and the role of manganese oxides, Chem. Eng. J., 354 (2018) 577–588.