References

  1. F.C. Moraes, L.F. Gorup, R.S. Rocha, M.R.V. Lanza, E.C. Pereira, Photoelectro-chemical removal of 17β-estradiol using a RuO2-graphene electrode, Chemosphere, 162 (2016) 99–104.
  2. C.M. Park, J. Heo, Y. Yoon, Oxidative degradation of bisphenol A and 17α-ethinyl estradiol by Fenton-like activity of silver nanoparticles in aqueous solution, Chemosphere, 168 (2017) 617–622.
  3. D. Tiwari, L. Sailo, Y.Y. Yoon, S.M. Lee, Efficient use of ferrate(VI) in the oxidative removal of potassium hydrogen phthalate from aqueous solutions, Environ. Eng. Res., 23 (2018) 129–135.
  4. J.P. Sumpter, A.C. Johnson, Lessons from endocrine disruption and their application to other issues concerning trace organics in the aquatic environment, Environ. Sci. Technol., 39 (2005) 4321–4332.
  5. L. Fernández, A. Louvado, V.I. Esteves, N.C.M. Gomes, A. Almeida, A. Cunha, Biodegradation of 17 β-estradiol by bacteria isolated from deep sea sediments in aerobic and anaerobic media, J. Hazard. Mater., 323 (2017) 359–366.
  6. M.B. Jenkins, D.M. Endale, H.H. Schomberg, P.G. Hartel, M.L. Cabrera, 17 β-Estradiol and testosterone in drainage and runoff from poultry litter applications to tilled and no-till crop land under irrigation, J. Environ. Manage., 90 (2009) 2659–2664.
  7. E. Adibnia, M. Razi, H. Malekinejad, Zearalenone and 17β-estradiol induced damages in male rats reproduction potential; evidence for ERα and ERβ receptors expression and steroidogenesis, Toxicon, 120 (2016) 133–146.
  8. S.H. Kim, Q. Tian, J. Fang, S. Sung, Removal of 17-β estradiol in water by sonolysis, Int. Biodeterior. Biodegrad., 102 (2015) 11–14.
  9. J.H. Kang, F. Kondo, Y. Katayama, Human exposure to bisphenol A, Toxicology, 226 (2006) 79–89.
  10. S.K. Khanal, D. Grewell, S. Sung, J. van Leeuwen (Hans), Ultrasound applications in wastewater sludge pretreatment: a review. Crit. Rev. Environ. Sci. Technol., 37 (2007) 277–313.
  11. M.M. Haque, M. Muneer, TiO2-mediated photocatalytic degradation of a textile dye derivative, bromothymol blue, in aqueous suspensions, Dyes Pigments, 75 (2007) 443–448.
  12. J.A. Mendoza, D.H. Lee, J.H. Kang, Photocatalytic removal of NOx using TiO2-coated zeolite, Environ. Eng. Res., 21 (2016) 291–296.
  13. M. Brienza, M.M. Ahmed, A. Escande, G. Plantard, L. Scrano, S. Chiron, S.A. Bufo, V. Goetz, Relevance of a photo-Fenton like technology based on peroxymonosulphate for 17β-estradiol removal from wastewater, Chem. Eng. J., 257 (2014) 191–199.
  14. G. Li Puma, V. Puddu, H.K. Tsang, A. Gora, B. Toepfer, Photocatalytic oxidation of multicomponent mixtures of estrogens (estrone (E1), 17β-estradiol (E2), 17α-ethynylestradiol (EE2) and estriol (E3)) under UVA and UVC radiation: photon absorption, quantum yields and rate constants independent of photon absorption, Appl. Catal. B Environ., 99 (2010) 388–397.
  15. P. Mazellier, L. Méité, J.D. Laat, Photodegradation of the steroid hormones 17β-estradiol (E2) and 17α-ethinylestradiol (EE2) in dilute aqueous solution, Chemosphere, 73 (2008) 1216–1223.
  16. Y. Kim, H. Joo, N. Her, Y. Yoon, J. Sohn, S. Kim, J. Yoon, Simultaneously photocatalytic treatment of hexavalent chromium (Cr(VI)) and endocrine disrupting compounds (EDCs) using rotating reactor under solar irradiation, J. Hazard. Mater., 288 (2015) 124–133.
  17. C. Lalhriatpuia, D. Tiwari, A. Tiwari, S.M. Lee, Immobilized nanopillars-TiO2 in the efficient removal of micro-pollutants from aqueous solutions: physico-chemical studies, Chem. Eng. J., 281 (2015) 782–792.
  18. D. Tiwari, C. Lalhriatpuia, Lalhmunsiama, S.M. Lee, S.H. Kong, Efficient application of nano-TiO2 thin films in the photocatalytic removal of Alizarin Yellow from aqueous solutions, Appl. Surf. Sci., 353 (2015) 275–283.
  19. Z. Pan, E.A. Stemmler, H.J. Cho, W. Fan, L.A. LeBlanc, H.H. Patterson, A. Amirbahman, Photocatalytic degradation of 17α-ethinylestradiol (EE2) in the presence of TiO2-doped zeolite, J. Hazard. Mater., 279 (2014) 17–25.
  20. S.H. Nam, Y.J. Shin, Y.J. An, Effects of titanium oxide nanoparticles on Oryzias latipes embryos and sac-fry under different irradiation conditions, Environ. Eng. Res., 22 (2017) 426–431.
  21. Á. A. Ramírez-Santos, P. Acevedo-Peña, E. M. Córdoba, Enhanced photocatalytic activity of TiO2 films by modification with polyethylene glycol, Quím. Nova, 35 (2012) 1931–1935.
  22. M. Ibadurrohman, K. Hellgardt, Morphological modification of TiO2 thin films as highly efficient photoanodes for photoelectrochemical water splitting, ACS Appl. Mater. Interfaces, 7 (2015) 9088–9097.
  23. X. Hu, Q. Zhu, Z. Gu, N. Zhang, N. Liu, M. S. Stanislaus, D. Li. Y. Yang, Wastewater treatment by sonophotocatalysis using PEG modified TiO2 film in a circular photocatalytic-ultrasonic system, Ultrason. Sonochem., 36 (2017) 301–308.
  24. S. Karapati, T. Giannakopoulou, N. Todorova, N. Boukos, I. Papailias, D. Dimotikali, C. Trapalis, Novel ‘Pickering’ modified TiO2 photocatalysts with high De-NOx efficiency, Catal. Today, 287 (2017) 45–51.
  25. F.B. Li, X.Z. Li, The enhancement of photodegradation efficiency using Pt–TiO2 catalyst, Chemosphere, 48 (2002) 1103–1111.
  26. Y. Lee, J. Yoon, U. von Gunten, Kinetics of the oxidation of phenols and phenolic endocrine disruptors during water treatment with ferrate (Fe(VI)), Environ. Sci. Technol., 39 (2005) 8978–8984.
  27. A. Zhang, Y. Li, Removal of phenolic endocrine disrupting compounds from waste activated sludge using UV, H2O2, and UV/H2O2 oxidation processes: effects of reaction conditions and sludge matrix, Sci. Total Environ., 493 (2014) 307–323.
  28. J. Santhanalakshmi, R. Komalavalli, P. Venkatesan, J. Santhanalakshmi, R. Komalavalli, P. Venkatesan, Photo catalytic degradation of chloropyrifos, endosulphon, imidocloprid and quinolphos by Nano crystalline TiO2 – a kinetic study with pH and mass effects, Nanosci. Nanotechnol., 2 (2012) 8–12.
  29. N. Daneshvar, M.A. Behnajady, M.K.A. Mohammadi, M.S.S. Dorraji, UV/H2O2 treatment of Rhodamine B in aqueous solution: influence of operational parameters and kinetic modeling, Desalination, 230 (2008) 16–26.
  30. M. Saquib, M. Muneer, TiO2-mediated photocatalytic degradation of a triphenylmethane dye (gentian violet), in aqueous suspensions, Dyes Pigm, 56 (2003) 37–49.
  31. C. Lalhriatpuia, A. Tiwari, A. Shukla, D. Tiwari, S.M. Lee, Nanopillars TiO2 thin film photocatalyst application in the remediation of aquatic environment, Korean J. Chem. Eng., 33 (2016) 3367–3373.
  32. S. Fukahori, H. Ichiura, T. Kitaoka, H. Tanaka, Capturing of bisphenol A photodecomposition intermediates by composite TiO2–zeolite sheets, Appl. Catal. B Environ., 46 (2003) 453–462.
  33. S. Liu, X. Zhao, H. Sun, R. Li, Y. Fang, Y. Huang, The degradation of tetracycline in a photo-electro-Fenton system, Chem. Eng. J., 231 (2013) 441–448.
  34. M. Krivec, R. Dillert, D.W. Bahnemann, A. Mehle, J. Štrancar, G. Dražić, The nature of chlorine-inhibition of photocatalytic degradation of dichloroacetic acid in a TiO2-based microreactor, Phys. Chem. Chem. Phys., 16 (2014) 14867–14873.
  35. T. Karpova, S. Preis, J. Kallas, Selective photocatalytic oxidation of steroid estrogens in the presence of copollutants in the sanitary fraction of domestic sewage, Int. J. Photoenergy, (2007) 1–8.
  36. X.D. Zhu, Y.J. Wang, R.J. Sun, D.M. Zhou, Photocatalytic degradation of tetracycline in aqueous solution by nanosized TiO2. Chemosphere, 92 (2013) 925–932.