References
- F. Zeng, K. Cui, Z. Xie, L. Wu, D. Luo, L. Chen, Y. Lin, M.
Liu, G. Sun, Distribution of phthalate esters in urban soils of
subtropical city, Guangzhou, China, J. Hazard. Mater., 164
(2009) 1171–1178.
- Z. Xie, R. Ebinghaus, C. Temme, R. Lohmann, Caba, Armando,
W. Ruck, Occurrence and air-sea exchange of phthalates in the
Arctic, Environ. Sci. Tech., 41 (2007) 4555–4560.
- C.J. Weschler, T. Salthammer, H. Fromme, Partitioning of
phthalates among the gas phase, airborne particles and settled
dust in indoor environments, Atmos. Environ., 42 (2008)
1449–1460.
- Y. Guo, L. Wang, K. Kannan, Phthalates and parabens in
personal care products from China: concentrations and human
exposure, Arch. Environ. Contam. Toxicol., 66 (2014) 113–119.
- Y. Ji, F. Wang, L. Zhang, C. Shan, Z. Bai, Z. Sun, L. Liu, B. Shen,
A comprehensive assessment of human exposure to phthalates
from environmental media and food in Tianjin, China, J.
Hazard. Mater., 279 (2014) 133–140.
- H. Liu, H. Liang, Y. Liang, D. Zhang, C. Wang, H. Cai, S.L.
Shvartsev, Distribution of phthalate esters in alluvial sediment:
a case study at JiangHan Plain, Central China, Chemosphere, 78
(2010) 382–388.
- B.R.T. Simoneit, P.M. Medeiros, B.M. Didyk, Combustion
products of plastics as indicators for refuse burning in the
atmosphere, Environ. Sci. Tech., 39 (2005) 6961–6970.
- B. Wang, H. Wang, W. Zhou, Y. Chen, Y. Zhou, Q. Jiang,
Urinary excretion of phthalate metabolites in school children of
China: implication for cumulative risk assessment of phthalate
exposure, Environ. Sci. Tech., 49 (2015) 1120–1129.
- P. Du, Z. Zhou, H. Huang, S. Han, Z. Xu, Y. Bai, X. Li, Estimating
population exposure to phthalate esters in major Chinese cities
through wastewater-based epidemiology, Sci. Total Environ.,
643 (2018) 1602–1609.
- X. Meng, Y. Wang, N. Xiang, L. Chen, Z. Liu, B. Wu, X. Dai,
Y. Zhang, Z. Xie, R. Ebinghaus, Flow of sewage sludge-borne
phthalate esters (PAEs) from human release to human intake:
implication for risk assessment of sludge applied to soil, Sci.
Total Environ., 476–477 (2014) 242–249.
- L. Niu, Y. Xu, C. Xu, L. Yun, W. Liu, Status of phthalate esters
contamination in agricultural soils across China and associated
health risks, Environ. Pollut., 195 (2014) 16–23.
- K. Huang, W. Chou, C. Wang, Y. Chang, C. Shu, Electrochemically
assisted coagulation for the adsorptive removal of dimethyl
phthalate from aqueous solutions using iron hydroxides, J.
Taiwan. Inst. Chem. Eng., 50 (2015) 236–241.
- Y. Hongjun, X. Wenjun, L. Qing, L. Jingtao, Y. Hongwen, L.
Zhaohua, Distribution of phthalate esters in topsoil: a case
study in the Yellow River Delta, China, Environ. Monit. Assess.,
185 (2013) 8489–8500.
- X. Zheng, B.T. Zhang, Y. Teng, Distribution of phthalate acid
esters in lakes of Beijing and its relationship with anthropogenic
activities, Sci. Total Environ., 476–477 (2014) 107–113.
- L. Chen, Y. Zhao, L. Li, B. Chen, Y. Zhang, Exposure assessment
of phthalates in non-occupational populations in China, Sci.
Total Environ., 427–428 (2012) 60–69.
- D. Gao, Z. Li, H. Wang, H. Liang, An overview of phthalate acid
ester pollution in China over the last decade: environmental
occurrence and human exposure, Sci. Total Environ., 645 (2018)
1400–1409.
- X. Liu, J. Shi, T. Bo, H. Zhang, W. Wu, Q. Chen, X. Zhan,
Occurrence of phthalic acid esters in source waters: a
nationwide survey in China during the period of 2009–2012,
Environ. Pollut., 184 (2014) 262–270.
- K. Qi, Y. Xie, R. Wang, S-y. Liu, Z. Zhao, Electroless plating Ni-P
cocatalyst decorated g-C3N4 with enhanced photocatalytic water
splitting for H2 generation, Appl. Surf. Sci., 466 (2019) 847–853.
- K. Qi, B. Cheng, J. Yu, W. Ho, Review on the improvement of
the photocatalytic and antibacterial activities of ZnO, J. Alloys
Compd., 727 (2017) 792–820.
- B. Yuan, X. Li, N. Graham, Reaction pathways of dimethyl
phthalate degradation in TiO2–UV–O2 and TiO2–UV–Fe(VI)
systems, Chemosphere, 72 (2008) 197–204.
- G. Wen, J. Ma, Z.Q. Liu, L. Zhao, Ozonation kinetics for the
degradation of phthalate esters in water and the reduction of
toxicity in the process of O3/H2O2, J. Hazard. Mater., 195 (2011)
371–377.
- T.K. Lau, W. Chu, N. Graham, The degradation of endocrine
disruptor di-n-butyl phthalate by UV irradiation: a photolysis
and product study, Chemosphere, 60 (2005) 1045–1053.
- L. Wang, G.Y. Fu, B. Zhao, Z. Zhang, X. Guo, H. Zhang,
Degradation of di-n-butyl phthalate in aqueous solution by the
O3/UV process, Desal. Wat Treat., 52 (2014) 824–833.
- K.S. Tay, N.A. Rahman, M.R.B. Abas, Fenton degradation of
dialkylphthalates: products and mechanism, Environ. Chem.
Lett., 9 (2011) 539–546.
- R.J. Watts, A.L. Teel, Treatment of contaminated soils and
groundwater using ISCO, Pract. Period. Hazard. Toxic Radioact.
Waste Manage.t, 10 (2006) 2–9.
- G.H. Scott, E.P. Bruce, Engineering Issue Paper: in-situ chemical
oxidation. EPA 600-R06-072, U.S. EPA, Office of Research and
Development, Cincinnati, 2006.
- Kambhu, M. Gren, W. Tang, S. Comfort, C.E. Harris, Remediating
1,4-dioxane-contaminated water with slow-release persulfate
and zerovalent iron, Chemosphere, 175 (2017) 170–177.
- Hussain, Y. Zhang, S. Huang, X. Du, Degradation of
p-chloroaniline by persulfate activated with zero-valent iron,
Chem. Eng. J., 203 (2012) 269–276.
- X. Wei, N. Gao, C. Li, Y. Deng, S. Zhou, L. Li, Zero-valent iron
(ZVI) activation of persulfate (PS) for oxidation of bentazon in
water, Chem. Eng. J., 285 (2016) 660–670.
- Y. Lu, X. Yang, L. Xu, Z. Wang, Y. Xu, G. Qian, Sulfate radicals
from Fe3+/persulfate system for Rhodamine B degradation,
Desal. Wat Treat., 57 (2016) 29411–29420.
- A.R. Zarei, H. Rezaeivahidian, A.R. Soleymani, Mineralization
of unsymmetrical dimethylhydrazine (UDMH) via persulfate
activated by zero valent iron nano particles: modeling,
optimization and cost estimation, Desal. Wat Treat., 57 (2016)
16119–16128.
- Tsitonaki, B.G. Petri, M. Crimi, H. Mosbaek, R.L. Siegrist, P.L.
Bjerg, In situ chemical oxidation of contaminated soil and
groundwater using persulfate: a review, Crit. Rev. Env. Sci.
Technol., 40 (2010) 55–91.
- M.G. Antoniou, A.A.D. La Cruz, D.D. Dionysiou, Degradation
of microcystin-LR using sulfate radicals generated through
photolysis, thermolysis and e− transfer mechanisms, Appl.
Catal. B., 96 (2010) 290–298.
- J. Fang, C. Shang, Bromate formation from bromide oxidation
by the UV/persulfate process, Environ. Sci. Technol., 46 (2012)
8976–8983.
- H. Li, J. Wan, Y. Ma, Y. Wang, M. Huang, Influence of particle
size of zero-valent iron and dissolved silica on the reactivity of
activated persulfate for degradation of acid orange 7, Chem.
Eng. J., 237 (2014) 487–496.
- Z. Wang, D. Deng, L. Yang, Degradation of dimethyl phthalate in
solutions and soil slurries by persulfate at ambient temperature,
J. Hazard. Mater., 271 (2014) 202–209.
- H. Li, J. Wan, Y. Ma, M. Huang, Y. Wang, Y. Chen, New insights
into the role of zero-valent iron surface oxidation layers in
persulfate oxidation of dibutyl phthalate solutions, Chem. Eng.
J., 250 (2014) 137–147.
- C. Liang, C. Huang, N. Mohanty, R.M. Kurakalva, A rapid
spectrophotometric determination of persulfate anion in ISCO,
Chemosphere, 73 (2008) 1540–1543.
- S.Y. Oh, H.W. Kim, J.M. Park, H.S. Park, C. Yoon, Oxidation of
polyvinyl alcohol by persulfate activated with heat, Fe2+, and
zero-valent iron, J. Hazard. Mater., 168 (2009) 346–351.
- Ghauch, G. Ayoub, S. Naim, Degradation of sulfamethoxazole
by persulfate assisted micrometric Fe0 in aqueous solution,
Chem. Eng. J., 228 (2013) 1168–1181.
- D.H. Bremner, A.E. Burgess, D. Houllemare, K. Namkung,
Phenol degradation using hydroxyl radicals generated from
zero-valent iron and hydrogen peroxide, Appl. Catal. B., 63
(2006) 15–19.