References

  1. F. Zeng, K. Cui, Z. Xie, L. Wu, D. Luo, L. Chen, Y. Lin, M. Liu, G. Sun, Distribution of phthalate esters in urban soils of subtropical city, Guangzhou, China, J. Hazard. Mater., 164 (2009) 1171–1178.
  2. Z. Xie, R. Ebinghaus, C. Temme, R. Lohmann, Caba, Armando, W. Ruck, Occurrence and air-sea exchange of phthalates in the Arctic, Environ. Sci. Tech., 41 (2007) 4555–4560.
  3. C.J. Weschler, T. Salthammer, H. Fromme, Partitioning of phthalates among the gas phase, airborne particles and settled dust in indoor environments, Atmos. Environ., 42 (2008) 1449–1460.
  4. Y. Guo, L. Wang, K. Kannan, Phthalates and parabens in personal care products from China: concentrations and human exposure, Arch. Environ. Contam. Toxicol., 66 (2014) 113–119.
  5. Y. Ji, F. Wang, L. Zhang, C. Shan, Z. Bai, Z. Sun, L. Liu, B. Shen, A comprehensive assessment of human exposure to phthalates from environmental media and food in Tianjin, China, J. Hazard. Mater., 279 (2014) 133–140.
  6. H. Liu, H. Liang, Y. Liang, D. Zhang, C. Wang, H. Cai, S.L. Shvartsev, Distribution of phthalate esters in alluvial sediment: a case study at JiangHan Plain, Central China, Chemosphere, 78 (2010) 382–388.
  7. B.R.T. Simoneit, P.M. Medeiros, B.M. Didyk, Combustion products of plastics as indicators for refuse burning in the atmosphere, Environ. Sci. Tech., 39 (2005) 6961–6970.
  8. B. Wang, H. Wang, W. Zhou, Y. Chen, Y. Zhou, Q. Jiang, Urinary excretion of phthalate metabolites in school children of China: implication for cumulative risk assessment of phthalate exposure, Environ. Sci. Tech., 49 (2015) 1120–1129.
  9. P. Du, Z. Zhou, H. Huang, S. Han, Z. Xu, Y. Bai, X. Li, Estimating population exposure to phthalate esters in major Chinese cities through wastewater-based epidemiology, Sci. Total Environ., 643 (2018) 1602–1609.
  10. X. Meng, Y. Wang, N. Xiang, L. Chen, Z. Liu, B. Wu, X. Dai, Y. Zhang, Z. Xie, R. Ebinghaus, Flow of sewage sludge-borne phthalate esters (PAEs) from human release to human intake: implication for risk assessment of sludge applied to soil, Sci. Total Environ., 476–477 (2014) 242–249.
  11. L. Niu, Y. Xu, C. Xu, L. Yun, W. Liu, Status of phthalate esters contamination in agricultural soils across China and associated health risks, Environ. Pollut., 195 (2014) 16–23.
  12. K. Huang, W. Chou, C. Wang, Y. Chang, C. Shu, Electrochemically assisted coagulation for the adsorptive removal of dimethyl phthalate from aqueous solutions using iron hydroxides, J. Taiwan. Inst. Chem. Eng., 50 (2015) 236–241.
  13. Y. Hongjun, X. Wenjun, L. Qing, L. Jingtao, Y. Hongwen, L. Zhaohua, Distribution of phthalate esters in topsoil: a case study in the Yellow River Delta, China, Environ. Monit. Assess., 185 (2013) 8489–8500.
  14. X. Zheng, B.T. Zhang, Y. Teng, Distribution of phthalate acid esters in lakes of Beijing and its relationship with anthropogenic activities, Sci. Total Environ., 476–477 (2014) 107–113.
  15. L. Chen, Y. Zhao, L. Li, B. Chen, Y. Zhang, Exposure assessment of phthalates in non-occupational populations in China, Sci. Total Environ., 427–428 (2012) 60–69.
  16. D. Gao, Z. Li, H. Wang, H. Liang, An overview of phthalate acid ester pollution in China over the last decade: environmental occurrence and human exposure, Sci. Total Environ., 645 (2018) 1400–1409.
  17. X. Liu, J. Shi, T. Bo, H. Zhang, W. Wu, Q. Chen, X. Zhan, Occurrence of phthalic acid esters in source waters: a nationwide survey in China during the period of 2009–2012, Environ. Pollut., 184 (2014) 262–270.
  18. K. Qi, Y. Xie, R. Wang, S-y. Liu, Z. Zhao, Electroless plating Ni-P cocatalyst decorated g-C3N4 with enhanced photocatalytic water splitting for H2 generation, Appl. Surf. Sci., 466 (2019) 847–853.
  19. K. Qi, B. Cheng, J. Yu, W. Ho, Review on the improvement of the photocatalytic and antibacterial activities of ZnO, J. Alloys Compd., 727 (2017) 792–820.
  20. B. Yuan, X. Li, N. Graham, Reaction pathways of dimethyl phthalate degradation in TiO2–UV–O2 and TiO2–UV–Fe(VI) systems, Chemosphere, 72 (2008) 197–204.
  21. G. Wen, J. Ma, Z.Q. Liu, L. Zhao, Ozonation kinetics for the degradation of phthalate esters in water and the reduction of toxicity in the process of O3/H2O2, J. Hazard. Mater., 195 (2011) 371–377.
  22. T.K. Lau, W. Chu, N. Graham, The degradation of endocrine disruptor di-n-butyl phthalate by UV irradiation: a photolysis and product study, Chemosphere, 60 (2005) 1045–1053.
  23. L. Wang, G.Y. Fu, B. Zhao, Z. Zhang, X. Guo, H. Zhang, Degradation of di-n-butyl phthalate in aqueous solution by the O3/UV process, Desal. Wat Treat., 52 (2014) 824–833.
  24. K.S. Tay, N.A. Rahman, M.R.B. Abas, Fenton degradation of dialkylphthalates: products and mechanism, Environ. Chem. Lett., 9 (2011) 539–546.
  25. R.J. Watts, A.L. Teel, Treatment of contaminated soils and groundwater using ISCO, Pract. Period. Hazard. Toxic Radioact. Waste Manage.t, 10 (2006) 2–9.
  26. G.H. Scott, E.P. Bruce, Engineering Issue Paper: in-situ chemical oxidation. EPA 600-R06-072, U.S. EPA, Office of Research and Development, Cincinnati, 2006.
  27. Kambhu, M. Gren, W. Tang, S. Comfort, C.E. Harris, Remediating 1,4-dioxane-contaminated water with slow-release persulfate and zerovalent iron, Chemosphere, 175 (2017) 170–177.
  28. Hussain, Y. Zhang, S. Huang, X. Du, Degradation of p-chloroaniline by persulfate activated with zero-valent iron, Chem. Eng. J., 203 (2012) 269–276.
  29. X. Wei, N. Gao, C. Li, Y. Deng, S. Zhou, L. Li, Zero-valent iron (ZVI) activation of persulfate (PS) for oxidation of bentazon in water, Chem. Eng. J., 285 (2016) 660–670.
  30. Y. Lu, X. Yang, L. Xu, Z. Wang, Y. Xu, G. Qian, Sulfate radicals from Fe3+/persulfate system for Rhodamine B degradation, Desal. Wat Treat., 57 (2016) 29411–29420.
  31. A.R. Zarei, H. Rezaeivahidian, A.R. Soleymani, Mineralization of unsymmetrical dimethylhydrazine (UDMH) via persulfate activated by zero valent iron nano particles: modeling, optimization and cost estimation, Desal. Wat Treat., 57 (2016) 16119–16128.
  32. Tsitonaki, B.G. Petri, M. Crimi, H. Mosbaek, R.L. Siegrist, P.L. Bjerg, In situ chemical oxidation of contaminated soil and groundwater using persulfate: a review, Crit. Rev. Env. Sci. Technol., 40 (2010) 55–91.
  33. M.G. Antoniou, A.A.D. La Cruz, D.D. Dionysiou, Degradation of microcystin-LR using sulfate radicals generated through photolysis, thermolysis and e− transfer mechanisms, Appl. Catal. B., 96 (2010) 290–298.
  34. J. Fang, C. Shang, Bromate formation from bromide oxidation by the UV/persulfate process, Environ. Sci. Technol., 46 (2012) 8976–8983.
  35. H. Li, J. Wan, Y. Ma, Y. Wang, M. Huang, Influence of particle size of zero-valent iron and dissolved silica on the reactivity of activated persulfate for degradation of acid orange 7, Chem. Eng. J., 237 (2014) 487–496.
  36. Z. Wang, D. Deng, L. Yang, Degradation of dimethyl phthalate in solutions and soil slurries by persulfate at ambient temperature, J. Hazard. Mater., 271 (2014) 202–209.
  37. H. Li, J. Wan, Y. Ma, M. Huang, Y. Wang, Y. Chen, New insights into the role of zero-valent iron surface oxidation layers in persulfate oxidation of dibutyl phthalate solutions, Chem. Eng. J., 250 (2014) 137–147.
  38. C. Liang, C. Huang, N. Mohanty, R.M. Kurakalva, A rapid spectrophotometric determination of persulfate anion in ISCO, Chemosphere, 73 (2008) 1540–1543.
  39. S.Y. Oh, H.W. Kim, J.M. Park, H.S. Park, C. Yoon, Oxidation of polyvinyl alcohol by persulfate activated with heat, Fe2+, and zero-valent iron, J. Hazard. Mater., 168 (2009) 346–351.
  40. Ghauch, G. Ayoub, S. Naim, Degradation of sulfamethoxazole by persulfate assisted micrometric Fe0 in aqueous solution, Chem. Eng. J., 228 (2013) 1168–1181.
  41. D.H. Bremner, A.E. Burgess, D. Houllemare, K. Namkung, Phenol degradation using hydroxyl radicals generated from zero-valent iron and hydrogen peroxide, Appl. Catal. B., 63 (2006) 15–19.