References

  1. A. Graveland, J.C. Vandijk, P.J. Demoel, J. Oomen, Developments in water softening by means of pellet reactors, J. AWWA, 75 (1983) 619–625.
  2. M. van Ammers, J.C. van Dijk, A. Graveland, P.A.N.M. Nühn, State of the art of pellet softening in the Netherlands, Water Supply, 4 (1986) 223–235.
  3. C.Y. Tai, W.C. Chien, C.Y. Chen, Crystal growth kinetics of calcite in a dense fluidized-bed crystallizer, AIChE J., 45 (1999) 1605–1614.
  4. C.Y. Tai, M.C. Chang, C.K. Wu, Y.C. Lin, Interpretation of calcite growth data using the two-step crystal growth model, Chem. Eng. Sci., 61 (2006) 5346–5354.
  5. W.N. Al Nasser, F.H. Al Salhi, Kinetics determination of calcium carbonate precipitation behavior by inline techniques, Powder Technol., 270 (2015) 548–560.
  6. R.Z. Hu, T.L. Huang, G. Wen, S.Y. Yang, Modelling particle growth of calcium carbonate in a pilot-scale pellet fluidized bed reactor, Water Sci. Technol.-Water Supply, 17 (2017) 643–651.
  7. C. van der Veen, A. Graveland, Central softening by crystallization in a fluidized-bed process, J. AWWA, 80 (1988) 51–58.
  8. J.C. van Dijk, H. Braakensiek, Phosphate removal by crystallization in a fluidized bed, Water Sci. Technol., 17 (1985) 133–142.
  9. L. Montastruc, S. Domenech, L. Pibouleau, C. Azzaro-Pantel, Methodology of study and modelization of dephosphorization of aqueous effluents, Can. J. Chem. Eng., 83 (2005) 742–754.
  10. L. Montastruc, S. Domenech, L. Pibouleau, C. Azzaro-Pantel, Experimental validation of calcium phosphate precipitation modeling in a pellet reactor, Environ. Technol., 26 (2005) 683–693.
  11. M.I. Ali, P.A. Schneider, An approach of estimating struvite growth kinetic incorporating thermodynamic and solution chemistry, kinetic and process description, Chem. Eng. Sci., 63 (2008) 3514–3525.
  12. M. Iqbal, H. Bhuiyan, D.S. Mavinic, Assessing struvite precipitation in a pilot-scale fluidized bed crystallizer, Environ. Technol., 29 (2008) 1157–1167.
  13. M.I.H. Bhuiyan, D.S. Mavinic, R.D. Beckie, Nucleation and growth kinetics of struvite in a fluidized bed reactor, J. Cryst. Growth, 310 (2008) 1187–1194.
  14. X. Ye, Z.L. Ye, Y.Y. Lou, S.Q. Pan, X.J. Wang, M.K. Wang, S.H. Chen, A comprehensive understanding of saturation index and upflow velocity in a pilot-scale fluidized bed reactor for struvite recovery from swine wastewater, Powder Technol., 295 (2016) 16–26.
  15. Y.J. Shih, R.R.M. Abarca, M.D.G. de Luna, Y.H. Huang, M.C. Lu, Recovery of phosphorus from synthetic wastewaters by struvite crystallization in a fluidized-bed reactor: effects of ph, phosphate concentration and coexisting ions, Chemosphere, 173 (2017) 466–473.
  16. K.S. Le Corre, E. Valsami-Jones, P. Hobbs, S.A. Parsons, Phosphorus recovery from wastewater by struvite crystallization: a review, Crit. Rev. Environ. Sci. Technol., 39 (2009) 433–477.
  17. M.I.H. Bhuiyan, D.S. Mavinic, F.A. Koch, Phosphorus recovery from wastewater through struvite formation in fluidized bed reactors: a sustainable approach, Water Sci. Technol., 57 (2008) 175–181.
  18. C.C. Su, L.D. Dulfo, M.L.P. Dalida, M.C. Lu, Magnesium phosphate crystallization in a fluidized-bed reactor: effects of pH, Mg:P molar ratio and seed, Sep. Purif. Technol., 125 (2014) 90–96.
  19. C. Zhang, K.N. Xu, J.Y. Li, C.W. Wang, M. Zheng, Recovery of phosphorus and potassium from source-separated urine using a fluidized bed reactor: optimization operation and mechanism modeling, Ind. Eng. Chem. Res., 56 (2017) 3033–3039.
  20. P. Zamora, T. Georgieva, I. Salcedo, N. Elzinga, P. Kuntke, C.J.N. Buisman, Long-term operation of a pilot-scale reactor for phosphorus recovery as struvite from source-separated urine, J. Chem. Technol. Biotechnol., 92 (2017) 1035–1045.
  21. E. Eggers, A.H. Dirkzwager, H. Vanderhoning, Full-scale experiences with phosphate crystallization in a crystalactor, Water Sci. Technol., 23 (1991) 819–824.
  22. R. Aldaco, A. Garea, A. Irabien, Fluoride recovery in a fluidized bed: crystallization of calcium fluoride on silica sand, Ind. Eng. Chem. Res., 45 (2006) 796–802.
  23. R. Aldaco, A. Garea, A. Irabien, Calcium fluoride recovery from fluoride wastewater in a fluidized bed reactor, Water Res., 41 (2007) 810–818.
  24. R. Aldaco, A. Irabien, P. Luis, Fluidized bed reactor for fluoride removal, Chem. Eng. J., 107 (2005) 113–117.
  25. A. Garea, R. Aldaco, A. Irabien, Improvement of calcium fluoride crystallization by means of the reduction of fines formation, Chem. Eng. J., 154 (2009) 231–235.
  26. K. Jiang, K.G. Zhou, Y.C. Yang, H. Du, Growth kinetics of calcium fluoride at high supersaturation in a fluidized bed reactor, Environ. Technol., 35 (2014) 82–88.
  27. L.Y. Deng, Y.W. Liu, T.L. Huang, T. Sun, Fluoride removal by induced crystallization using fluorapatite/calcite seed crystals, Chem. Eng. J., 287 (2016) 83–91.
  28. C.Y. Tai, P.C. Chen, T.M. Tsao, Growth kinetics of CaF2 in a pH-stat fluidized-bed crystallizer, J. Cryst. Growth, 290 (2006) 576–584.
  29. M. Schöller, J.C. van Dijk, D. Wilms, Recovery of heavy metals by crystallization in the pellet reactor, Environ. Technol., 8 (1987) 294–303.
  30. P. Zhou, J.C. Huang, A.W.F. Li, S. Wei, Heavy metal removal from wastewater in fluidized bed reactor, Water Res., 33 (1999) 1918–1924.
  31. C.I. Lee, W.F. Yang, Heavy metal removal from aqueous solution in sequential fluidized-bed reactors, Environ. Technol., 26 (2005) 1345–1354.
  32. A.H.M. Veeken, L. Akoto, L. W. Hulshoff Pol, J. Weijma, Control of the sulfide (S2) concentration for optimal zinc removal by sulfide precipitation in a continuously stirred tank reactor, Water Res., 37 (2003) 3709–3717.
  33. J.P. Chen, H. Yu, Lead removal from synthetic wastewater by crystallization in a fluidized-bed reactor, J. Environ. Sci. Health, Part A-Toxic/Hazard. Subst. Environ. Eng., 35 (2000) 817–835.
  34. C.-W. Li, Y.-M. Liang, Y.-M. Chen, Combined ultrafiltration and suspended pellets for lead removal, Sep. Purif. Technol., 45 (2005) 213–219.
  35. M.D.G. de Luna, L.M. Bellotindos, R.N. Asiao, M.-C. Lu, Removal and recovery of lead in a fluidized-bed reactor by crystallization process, Hydrometallurgy, 155 (2015) 6–12.
  36. C. Huang, J.R. Pan, M. Lee, S. Yen, Treatment of high-level arsenic-containing wastewater by fluidized bed crystallization process, J. Chem. Technol. Biotechnol., 82 (2007) 289–294.
  37. C.-I. Lee, W.-F. Yang, C.-I. Hsieh, Removal of Cu(II) from aqueous solution in a fluidized-bed reactor, Chemosphere, 57 (2004) 1173–1180.
  38. N. Boonrattanakij, M.C. Lu, J. Anotai, Iron crystallization in a fluidized-bed Fenton process, Water Res., 45 (2011) 3255–3262.
  39. Y. Shimizu, I. Hirasawa, Effect of seeding on metal ion recovery from wastewater by reactive crystallization of metal carbonates, Chem. Eng. Technol., 35 (2012) 1588–1592.
  40. D. Guillard, A.E. Lewis, Nickel carbonate precipitation in a fluidized-bed reactor, Ind. Eng. Chem. Res., 40 (2001) 5564–5569.
  41. D. Guillard, A.E. Lewis, Optimization of nickel hydroxycarbonate precipitation using a laboratory pellet reactor, Ind. Eng. Chem. Res., 41 (2002) 3110–3114.
  42. V.C.T. Costodes, A.E. Lewis, Reactive crystallization of nickel hydroxy-carbonate in fluidized-bed reactor: fines production and column design, Chem. Eng. Sci., 61 (2006) 1377–1385.
  43. M. Scholler, J.C. van Dijk, D. Wilms, Fluidized bed pellet reactor to recover metals or anions, Met. Finish., 89 (1991) 46–50.
  44. D. Wilms, A. van Haute, J. van Dijk, M. Scholler, Recovery of Nickel by Crystallization of Nickel Carbonate in a Fluidizedbed Reactor, Water Pollution Control in Asia, Pergamon Press, Oxford, 1987.
  45. D. Wilms, K. Vercaemst, J.C. van Dijk, Recovery of silver by crystallization of silver carbonate in a fluidized-bed reactor, Water Res., 26 (1992) 235–239.
  46. L.D. Shiau, T.S. Lu, Interactive effects of particle mixing and segregation on the performance characteristics of a fluidized bed crystallizer, Ind. Eng. Chem. Res., 40 (2001) 707–713.
  47. L. Montastruc, C. Azzaro-Pantel, B. Biscans, M. Cabassud, S. Domenech, L. Dibouleau, A general framework for pellet reactor modelling: application to P-recovery, Chem. Eng. Res. Des., 81 (2003) 1271–1278.
  48. L. Montastruc, C. Azzaro-Pantel, L. Pibouleau, S. Domenech, A systemic approach for pellet reactor modeling: application to water treatment, AIChE J., 50 (2004) 2514–2525.
  49. C.Y. Tai, Crystal growth kinetics of two-step growth process in liquid fluidized-bed crystallizers, J. Cryst. Growth, 206 (1999) 109–118.
  50. K.M. van Schagen, L.C. Rietveld, R. Babuska, O.J. Kramer, Model-based operational constraints for fluidised bed crystallisation, Water Res., 42 (2008) 327–337.
  51. W.D. Jr. Harms, R.B. Robinson, Softening by fluidized bed crystallizers, J. Environ. Eng., 118 (1992) 513–529.
  52. M.M. Seckler, O.S.L. Bruinsma, G.M. van Rosmalen, Phosphate removal in a fluidized bed – I. Identification of physical processes, Water Res., 30 (1996) 1585–1588.
  53. M.M. Seckler, O.S.L. Bruinsma, G.M. van Rosmalen, Calcium phosphate precipitation in a fluidized bed in relation to process conditions: a black box approach, Water Res., 30 (1996) 1677–1685.
  54. M.M. Seckler, M.L.J. van Leeuwen, O.S.L. Bruinsma, G.M. van Rosmalen, Phosphate removal in a fluidized bed – II. Process optimization, Water Res., 30 (1996) 1589–1596.
  55. L.D. Shiau, S.H. Cheng, Y.C. Liu, Modeling of a fluidized-bed crystallizer operated in a batch mode, Chem. Eng. Sci., 54 (1999) 865–871.
  56. A.E. Nielsen, Electrolyte crystal growth mechanism, J. Cryst. Growth, 67 (1984) 289–310.
  57. J.F. Richardson, J.F. Zaki, Sedimentation and fluidization. Part I, Trans. Inst. Chem. Eng., 32 (1954) 35–52.
  58. D. Kunii, O. Levenspiel, Fluidization Engineering, Wiley Press, New York, 1969.
  59. M.S. Lee, The Application of Inorganic Wastewater Treatment with Crystallization Technology in a Fluidized Bed, Master Thesis, Chung Yuan Christian University, Taiwan, R.O.C., 1993.
  60. R. Aldaco, A. Garea, A. Irabien, Modeling of particle growth: application to water treatment in a fluidized bed reactor, Chem. Eng. J., 134 (2007) 66–71.