References

  1. M.A. Eltawil, Z. Zhengming, L. Yuan, A review of renewable energy technologies integrated with desalination systems, Renew Sustain Energy Rev, 13 (2009) 2245–2262.
  2. A. Ali, R.A. Tufa, F. Macedonio, E. Curcio, E. Drioli, Membrane technology in renewable-energy-driven desalination, Renew Sustain Energy Rev, 81 (2018) 1–21.
  3. Z. Lia, A. Siddiqi, L.D. Anadon, V. Narayanamurti, Towards sustainability in water-energy nexus: ocean energy for seawater desalination, Renew Sustain Energy Rev, 82 (2018) 3833–3847.
  4. S. Manju, N. Sagar, Renewable energy integrated desalination: a sustainable solution to overcome future fresh-water scarcity in India, Renew Sustain Energy Rev, 73 (2017) 594–609
  5. J. Junga, M. Villaran, Optimal planning and design of hybrid renewable energy systems for microgrids, Renew Sustain Energy Rev, 75 (2017) 180–191.
  6. J. Ahmad, M. Imran, A. Khalid, W. Iqbal, S.R. Ashraf, M. Adnan, S.F. Ali, K.S. Khokhar, Techno economic analysis of a wind-photovoltaic-biomass hybrid renewable energy system for rural electrification: a case study of Kallar Kahar. Energy, 148 (2018) 208–234.
  7. K.S. Krishna, K.S. Kumar, A review on hybrid renewable energy systems. Renew Sustain Energy Rev, 52 (2015) 907–916.
  8. A.B. Pouyfaucon, L. García-Rodríguez, Solar thermalpowered desalination: a viable solution for a potential market, Desalination, 435 (2018) 60–69.
  9. M. Shatat, M. Worall, S. Riffat, Opportunities for solar water desalination worldwide: review, Sustain Cities Soc, 9 (2013) 67–80.
  10. S.A. Kalogirou, Seawater desalination using renewable energy sources, Prog Energ Combust, 31 (2005) 242–281.
  11. A.D. Khawajia, I.K. Kutubkhanah, J.M. Wie, Advances in seawater technologies, Desalination, 221 (2008) 47–69.
  12. C. Charcosset, A review of membrane processes and renewable energies for desalination, Desalination, 245 (2009) 214–231.
  13. V.G. Gude, Renewable Energy Powered Desalination Handbook Application and Thermodynamics, Elsevier, 2018.
  14. V.G. Gude, Energy storage for desalination processes powered by renewable energy and waste heat sources, Appl Energy, 137 (2015) 877−898.
  15. M.A. Abdelkareem, M.E. Haj Assad, Enas Taha Sayed, Bassel Soudan, Recent progress in the use of renewable energy sources to power water desalination plants, Desalination, 435 (2018) 97–113.
  16. E. Mathioulakis, V. Belessiotis, E. Delyannis, Desalination by using alternative energy: review and state-of-the-art, Desalination, 203 (2007) 346–365.
  17. V.G. Gude, N. Nirmalakhandan, S. Deng, Renewable and sustainable approaches for desalination, Renew Sustain Energy Rev, 14 (2010) 2641–2654.
  18. P.V. Kumar, A. Kumar, O. Prakash, A.K. Kaviti, Solar stills system design: a review, Renew Sustain Energy Rev, 51 (2015) 153–181.
  19. H. Sharon, K.S. Reddy, A review of solar energy driven desalination technologies, Renew Sustain Energy Rev, 41 (2015) 1080–1118.
  20. T. Szacsvay, P. Hofer-Noser, M. Posnansky, Technical and economic aspects of small scale solar pond powered seawater desalination systems, Desalination, 122 (1999) 185–193.
  21. C. Li, Y. Goswami, E. Stefanakos, Solar assisted seawater desalination: a review, Renew Sustain Energy Rev, 19 (2013) 136–163.
  22. N. Ghaffour, J. Bundschuh, H. Mahmoudi, M.F.A. Goosen, Renewable energy-driven desalination technologies: a comprehensive review on challenges and potential applications of integrated systems, Desalination, 356 (2015) 94–114.
  23. Water Desalination Using Renewable Energy Technology Brief. International Renewable Energy Agency IRENA March 2012. www.irena.org.
  24. S. Parekh, M.M. Farid, J.R. Selman, S. Al-Hallaj, Solar desalination with a humidification-dehumidification technique−a comprehensive technical review, Desalination, 160 (2004) 167−186.
  25. I.S. Bourounia, M.T. Chaibib, L. Tadrist, Water desalination by humidification and dehumidification of air: state of the art, Desalination, 137 (2001) 167−176.
  26. U. Plantikow, Wind-powered MVC seawater desalinationoperational results, Desalination 122 (1999) 291–299.
  27. M.S. Miranda, D. Infield, A wind-powered seawater reverseosmosis system without batteries, Desalination, 153 (2002) 9–16.
  28. J.M. Veza, B. Penate, F. Castellano, Electrodialysis desalination designed for offgrid wind energy, Desalination, 160 (2004) 211–221.
  29. E. Spang, The potential for wind-powered desalination in water-scarce countries. MS thesis. Tufts University. 2006.
  30. H. Mahmoudi, N. Spahis, M.F. Goosen, S. Sablani, S.A. Abdulwahab, N. Ghaffour, N. Drouiche, Assessment of wind energy to power solar brackish water greenhouse desalination units: a case study from Algeria, Renew Sustain Energy Rev, 13 (2009) 2149–2155.
  31. J. Käufler, R. Pohl, H. Sader, Seawater desalination (RO) as a wind powered industrial process- Technical and economical specifics, Desal. Wat. Treat., 31 (2011) 359–365.
  32. A. Subramani, M. Badruzzaman, J. Oppenheimer, J.G. Jacangelo, Energy minimization strategies and renewable energy utilization for desalination: a review, Water Res. 45 (2011) 1907−1920.
  33. MEDRC R&D Report, Matching Renewable Energy with Desalination Plants, IT Power Ltd, 2001.
  34. E. Barbier, Geothermal energy technology and current status: an overview, Renew Sustain Energy Rev, 6 (2002) 3–65.
  35. M. Goosen, H. Mahmoudi, N. Ghaffour, Water desalination using geothermal energy. Energies 3 (2010) 1423–1442.
  36. V.G. Gude, Geothermal source potential for water desalination – Current status and future perspective, Renew Sustain Energy Rev, 57 (2016) 1038–1065.
  37. Letter to the Editor, Energy consumption and water production cost of conventional and renewable-energy-powered desalination processes, Renew Sustain Energy Rev, 24 (2013) 343–356.
  38. V.G. Gude, Geothermal Source for Water Desalination— Challenges and Opportunities, in: renewable Energy Powered Desalination Handbook Application and Thermodynamics, Elsevier, 2018, pp. 141–176.
  39. R.A. Sawyer, D.F. Maratos, Wave power for desalination using unsteady incompressible duct flow (waterhammer), Proc. Mediterranean Conf. on Policies and Strategies for Desalination and Renewable Energies, Santorini, Greece, (2000) 388–394.
  40. N. Sharmila, P. Jalihal, A.K. Swamy, M. Ravindran, Wave powered desalination system, Energy, 9 (2004) 1659–1672.
  41. P.A. Davies, Wave-powered desalination: resource assessment and review of technology, Desalination, 186 (2005) 97–109.
  42. S.H. Salter, High purity desalination using wave driven vapour compression, World Renewable Energy Conference Aberdeen, 2005.
  43. M. Folley, B.P. Suarezb, T. Whittaker, An autonomous wavepowered desalination system, Desalination, 220 (2008) 412–421.
  44. M. Folley, T. Whittaker, The cost of water from an autonomous wave-powered desalination plant, Renew Energy, 34 (2009) 75–81.
  45. A.S. Bayoumi, A. Incecik, H. El Gamal, K. Shalash, Wave powered water desalination in Egypt. Fourteenth International Water Technology Conference, IWTC 14 2010, Cairo, Egypt.
  46. J.G. McGowan, Ocean Thermal Energy Conversion - A significant solar resource, Sol Energy, 18 (1976) 81–92.
  47. A. Mani, S. Kumaraswamy, R.S. Kumar, Utilization of ocean thermal energy for desalination of brackish water, Technical Report, Indian Institute of Technology Madras, Chennai, 2002.
  48. R.S. Kumar, A. Mani, A. Kumaraswamy, Experimental studies on desalination system for ocean thermal energy utilization, Desalination, 207 (2007) 1–8.
  49. J. Leijon, C. Boström, Freshwater production from the motion of ocean waves – A review, Desalination, 435 (2018) 161–171.
  50. M. Ibrahim, A. Khair, S. Ansari, A review of hybrid renewable energy systems for electric power generation, Int. Journal of Engineering Research and Applications, 5 (2015) 42–48.
  51. G. Bekele, B. Palm, Feasibility study for a standalone solar–wind-based hybrid energy system for application in Ethiopia, Appl Energy, 87 (2010) 487–495.
  52. A. Shiroudi, R. Rashidi, G.B. Gharehpetian, S.A. Mousavifar, A.A. Foroud, Case study: simulation and optimization of photovoltaic-wind-battery hybrid energy system in Taleghan, Iran using homer software, J Renew Sustain Energy, 4 (2012) 053111.
  53. T. Ma, H. Yang, L. Lu, A feasibility study of a stand-alone hybrid solar–wind–battery system for a remote island, Appl Energy, 121 (2014) 149–158.
  54. J.G. McGowan, J.F. Manwell, C. Avelar, C.L. Warner, Hybrid wind/PV/diesel hybrid power systems modeling and South American applications, Renew Energy, 9 (1996) 836–847.
  55. S. Sou, W. Siemers, R.H.B. Exell, The design of a photovoltaic/ biomass hybrid electrical energy system for a rural village in Cambodia, Int. J. Ambient Energy, 31 (2010) 3−12.
  56. K. Janardhan, T. Srivastava, G. Satpathy, K. Sudhakar, Hybrid solar PV and biomass system for rural electrification, Int. J. Chem Tech Research CODEN (USA), 5 (2013) 802–810.
  57. S. Bhattacharjee, A. Dey, Techno-economic performance evaluation of grid integrated PV-biomass hybrid power generation for rice mill, Sustain. Energy Technol. Assess., 7 (2014) 6–16.
  58. T. Srinivas, B.V. Reddy, Hybrid solar–biomass power plant without energy storage, Case Stud. Thermal Eng., 2 (2014) 75–81.
  59. C. Zhou, E. Doroodchi, B. Moghtaderi, An in-depth assessment of hybrid solar–geothermal power generation, Energy Convers Manage, 74 (2013) 88–101.
  60. H. Ghasemi, E. Sheu, A. Tizzanini, M. Paci, A. Mitsos, Hybrid solar–geothermal power generation: optimal retrofitting, Appl Energy, 131 (2014) 158–170.
  61. Y. Abbasi, E. Baniasadi, H. Ahmadikia, Performance assessment of a hybrid solar-geothermal air conditioning system for residential application: energy, exergy, and sustainability analysis, Int. J. Chem Eng, (2016) Article ID 5710560.
  62. J. Margeta, Z. Glasnovic, Feasibility of the green energy production by hybrid solar + hydropower system in Europe and similar climate areas, Renew Sustain Energy Rev, 14 (2010) 1580–1590.
  63. S. Meshram, G. Agnihotri, S. Gupta, Performance analysis of grid integrated hydro and solar based hybrid systems, Adv. Power Electron., (2013) Article ID 697049.
  64. A. Pérez-Navarro, D. Alfonso, C. Álvarez, F. Ibáñez, C. Sánchez, I. Segura, Hybrid biomass-wind power plant for reliable energy generation, Renew Energy, 35 (2010) 1436–1443.
  65. P. Balamurugan, S. Ashok, T.L. Jose, An optimal hybrid windbiomass gasifier system for rural areas. Energ Source Part A, 33 (2011) 823–832.
  66. G. Caraiman, C. Nichita, V. Mînzu, B. Dakyio, C.H. Jo, Concept study of offshore wind and tidal hybrid conversion based on real time simulation, Int. Conf. on Renewable Energies and Power Quality Spain, April 2010.
  67. S.M. Mousavi G, An autonomous hybrid energy system of wind/tidal/microturbine/battery storage, Int. J. Elec Power, 43 (2012) 1144–1154.
  68. P. Kruangpradit, W. Tayati, Hybrid renewable energy system development in Thailand, Renew Energy, 8 (1996) 514−517.
  69. A.B. Kanase-Patil, R.P. Saini, M.P. Sharma, Sizing of integrated renewable energy system based on load profiles and reliability index for the state of Uttarakhand in India, Renew Energy, 36 (2011) 2809–2821.
  70. D. Zejli, A. Ouammi, R. Sacile, H. Dagdougui, A. Elmidaoui, An optimization model for a mechanical vapor compression desalination plant driven by a wind/PV hybrid system, Appl Energy, 88 (2011) 4042–4054.
  71. I.H. Yılmaz, M.S Söylemez, Design and computer simulation on multi-effect evaporation seawater desalination system using hybrid renewable energy sources in Turkey, Desalination, 291 (2012) 23–40.
  72. E. Tzen, D. Theofilloyianakos, M. Sigalas, K. Karamansis, Design and development of a hybrid autonomous system for seawater desalination, Desalination, 166 (2004) 267–274.
  73. M.A.M. Khan, S. Rehman, F.A. Al-Sulaiman, A hybrid renewable energy system as a potential energy source for water desalination using reverse osmosis: a review, Renew Sustain Energy Rev, 97 (2018) 456–477.
  74. K. Bourouni, T.B. M’Barek, A. Al Taee, Design and optimization of desalination reverse osmosis plants driven by renewable energies using genetic algorithms, Renew Energy, 36 (2011) 936–950.
  75. E. Koutroulis, D. Kolokotsa, Design optimization of desalination systems power-supplied by PV and W/G energy sources, Desalination, 258 (2010) 171–181.
  76. A.A. Setiawan, Y. Zhao, C.V. Nayar, Design, economic analysis and environmental considerations of mini-grid hybrid power system with reverse osmosis desalination plant for remote areas, Renew Energy, 34 (2009) 374–383.
  77. A.J.N. Khalifa, Evaluation of different hybrid power scenarios to Reverse Osmosis (RO) desalination units in isolated areas in Iraq, Energy Sustain. Develop., 15 (2011) 49–54.
  78. E.M.A Mokheimer, A.Z. Sahin, A. Al-Sharafi, A.I. Ali, Modeling and optimization of hybrid wind–solar-powered reverse osmosis water desalination system in Saudi Arabia. Energy Convers Manage, 75 (2013) 86−97.
  79. D. Weiner, D. Fisher, E.J. Moses, B. Katz, G. Meron, Operation experience of a solar- and wind-powered desalination demonstration plant, Desalination, 137 (2001) 7−13.
  80. M. Smaoui, A. Abdelkafi, L. Krichen, Optimal sizing of standalone photovoltaic/wind/hydrogen hybrid system supplying a desalination unit, Sol Energy, 120 (2015) 263−276.
  81. S.A. Kershrnan, J. Rheinlander, H. Gablerb, Seawater reverse osmosis powered from renewable energy sources-hybrid wind/photovoltaic/grid power supply for small-scale desalination in Libya, Desalination, 153 (2002) 17−23.
  82. E.S. Mohamed, G. Papadakis, Design, simulation and economic analysis of a stand-alone reverse osmosis desalination unit powered by wind turbines and photovoltaics, Desalination, 164 (2004) 87−97.
  83. A. Hossam-Eldin, A.M. El-Nashar, A. Ismaiel, Investigation into economical desalination using optimized hybrid renewable energy system, Elect. Power Energy Syst., 43 (2012) 1393−1400.
  84. H. Cherif, J. Belhadj, Large-scale time evaluation for energy estimation of stand-alone hybrid photovoltaic-wind system feeding a reverse osmosis desalination unit, Energy, 36 (2011) 6058−6067.
  85. U. Caldera, D. Bogdanov, C. Breyer, Local cost of seawater RO desalination based on solar PV and wind energy: a global estimate, Desalination, 385 (2016) 207–216.
  86. W. Peng, A. Malekic, M.A. Rosend, P. Azarikhah, Optimization of a hybrid system for solar-wind-based water desalination by reverse osmosis: comparison of approaches, Desalination, 442 (2018) 16–31.
  87. A. Soni, J.A. Stagner, D.S-K. Ting, Adaptable wind/solar powered hybrid system for household wastewater treatment, Sustain. Energy Technol. Assess., 24 (2017) 8–18.
  88. S.M. Hasnain, S.A Alajlan, Coupling of PV-powered RO brackish water desalination plant with solar stills, Desalination, 116 (1998) 57−64.
  89. S. Kumar, A. Tiwari, Design, fabrication and performance of a hybrid photovoltaic/thermal (PV/T) active solar still, Energy Convers Manage, 51 (2010) 1219−1229.
  90. S. Kumar, G.N. Tiwari, Life cycle cost analysis of single slope hybrid (PV/T) active solar still, Appl Energy, 86 (2009) 1995−2004.
  91. F. Saeedi, F. Sarhaddi, A. Behzadmehr, Optimization of a PV/T (photovoltaic/thermal) active solar still, Energy, 87 (2015) 142−152.
  92. M.K. Gaur, G.N. Tiwari, Optimization of number of collectors for integrated PV/T hybrid active solar still, Appl Energy, 87 (2010) 1763−1772.
  93. B.P. kumar, D.P. Winston, P. Pounraj, A.M. Manokar, R. Sathyamurthy, A.E. Kabeel, Experimental investigation on hybrid PV/T active solar still with effective heating and cover cooling method, Desalination, 435 (2018) 140–151.
  94. P. Pounraj, D. Prince Winston, A.E. Kabeel, B. Praveen Kumar, A. Muthu Manokar, Ravishankar Sathyamurthy, S. Cynthia Christabel, Experimental investigation on Peltier based hybrid PV/T active solar still for enhancing the overall performance, Energy Convers Manage, 168 (2018) 371–381.
  95. A.M. Manokar, D.P. Winston, A.E. Kabeel, S.A. El-Agouz, R. Sathyamurthy, T. Arunkumar, B. Madhu, A. Ahsan, Integrated PV/T solar still. A mini-review, Desalination, 435 (2018) 259–267.
  96. R. Sathyamurthy, S.A. El-Agouz, P.K. Nagarajan, J. Subramani, T. Arunkumar, D. Mageshbabu, B. Madhu, R. Bharathwaajad, N. Prakash, A Review of integrating solar collectors to solar still, Renew Sustain Energy Rev, 77 (2017) 1069–1097.
  97. M.A. Eltawil, Z.M. Omara, Enhancing the solar still performance using solar photovoltaic, flat plate collector and hot air, Desalination, 349 (2014) 1–9.
  98. K. Voropoulos, E. Mathioulakis, V. Belessiotis, A hybrid solar desalination and water heating system, Desalination, 164 (2004) 189−195.
  99. Z.M. Omara, M.A. Eltawil, E.A. ElNashar, A new hybrid desalination system using wicks/solar still and evacuated solar water heater, Desalination, 325 (2013) 56–64.
  100. A.A. Badran, A.A. Al-Hallaq, I.A.E. Salman, M.Z. Odat, A solar still augmented with a flat-plate collector, Desalination, 172 (2005) 227−234.
  101. O.O. Badran, H.A. Al-Tahaineh, The effect of coupling a flatplate collector on the solar still productivity, Desalination, 183 (2005) 137–142.
  102. K. Sampathkumar, P. Senthilkumar, Utilization of solar water heater in a single basin solar still—An experimental study, Desalination, 297 (2012) 8–19.
  103. M. Feilizadeh, M.R. Karimi Estahbanati, K. Jafarpur, R. Roostaazad, M. Feilizadeh, H. Taghvaei, Year-round outdoor experiments on a multi-stage active solar still with different numbers of solar collectors, Appl Energy, 152 (2015) 39−46.
  104. R.V. Singh, S. Kumar, M.M. Hasan, M.E. Khan, G.N. Tiwari, Performance of a solar still integrated with evacuated tube collector in natural mode, Desalination, 318 (2013) 25–33.
  105. S. Kumar, A. Dubey, G.N. Tiwari, A solar still augmented with an evacuated tube collector in forced mode, Desalination, 347 (2014) 15–24.
  106. K. Voropoulos, E. Mathioulakis, V. Belessiotis, Experimental investigation of a solar still coupled with solar collectors, Desalination, 138 (2001) 103−110.
  107. C. Thakur, R. Ali, Experimental investigation of double sloped solar still coupled with flat plate solar water heater, Int. J. Recent Technol. Mech. Elect. Eng. (IJRMEE), 2 (2015) 052−055.
  108. H. Tanaka, Y. Nakatake, K. Watanabe, Parametric study on a vertical multiple effect diffusion type solar still coupled with a heat pipe solar collector, Desalination, 171 (2004) 243–255.
  109. H. Tanaka, Y. Nakatake, A vertical multiple-effect diffusiontype solar still coupled with a heat-pipe solar collector, Desalination, 160 (2004) 195−205.
  110. H. Tanaka, Y. Nakatake, M. Tanaka, Indoor experiments of the vertical multi-effect diffusion-type solar still coupled with a heat-pipe solar collector, Desalination, 177 (2005) 291−302.
  111. T.L. Chong, B.J. Huang, P.H. Wu, Y.C. Kao, Multiple-effect diffusion solar still coupled with a vacuum-tube collector and heat pipe, Desalination, 347 (2014) 66–76.
  112. B.J. Huang, T.L. Chong, P.H. Wu, H.Y. Dai, Y.C. Kao, Spiral multiple-effect diffusion solar still coupled with vacuum-tube collector and heat pipe, Desalination, 362 (2015) 74–83.
  113. V. Velmurugan, K. Srithar, Solar stills integrated with a mini solar pond- analytical simulation and experimental validation, Desalination, 216 (2007) 232–241.
  114. A.A. El-Sebaii, M.R.I. Ramadan, S. Aboul-Enein, N. Salem, Thermal performance of a single-basin solar still integrated with a shallow solar pond, Energy Convers Manage, 49 (2008) 2839−2848.
  115. V. Velmurugan, J. Mandlin, B. Stalin, K. Srithar, Augmentation of saline streams in solar stills integrating with a mini solar pond, Desalination, 249 (2009) 143–149.
  116. V. Velmurugan, S. Pandiarajan, P. Guruparan, L.H. Subramanian, C.D. Prabaharan, K. Srithar, Integrated performance of stepped and single basin solar stills with mini solar pond, Desalination, 249 (2009) 902–909.
  117. A.A. El-Sebaii, S. Aboul-Enein, M.R.I. Ramadan, A.M. Khallaf, Thermal performance of an active single basin solar still (ASBS) coupled to shallow solar pond (SSP), Desalination, 280 (2011) 183–190.
  118. M. Appadurai, V. Velmurugan, Performance analysis of fin type solar still integrated with fin type mini solar pond, Sustain. Energy Technol. Assess., 9 (2015) 30−36.
  119. G.P. Narayan, M.H. Sharqawy, E.K. Summers, J.H. Lienhard, S.M. Zubair, M.A. Antar, The potential of solar-driven humidification–dehumidification desalination for small-scale decentralized water production, Renew Sustain Energy Rev, 14 (2010) 1187–1201.
  120. J. Orfi, N. Galanis, M. Laplante, Air humidification–dehumidification for a water desalination system using solar energy, Desalination, 203 (2007) 471–481.
  121. K. Zhani, H.B. Bacha, T. Damak, Study of a water desalination unit using solar energy, Desal. Wat Treat, 3 (2009) 261–270.
  122. K. Zhani, H.B. Bacha, An approach to optimize the production of solar desalination unit using the SMCEC principle, Desal. Wat Treat, 13 (2010) 96−107.
  123. K. Zhani, H.B. Bacha, Modeling and simulation of a new design of the SMCEC desalination unit using solar energy, Desal. Wat Treat, 21 (2010) 346–356.
  124. K. Zhani, H.B. Bacha, T. Damak, Modeling and experimental validation of a humidification−dehumidification desalination unit solar part, Energy, 36 (2011) 3159−3169.
  125. H.B. Bacha, Dynamic modeling and experimental validation of a water desalination prototype by solar energy using humidification dehumidification process, Desalination, 322 (2013) 182–208.
  126. A.E. Kabeel, E.M.S. El-Said, A hybrid solar desalination system of air humidification dehumidification and water flashing evaporation: a comparison among different configurations, Desalination, 330 (2013) 79–89.
  127. C. Yıldırım, I. Solmus, A parametric study on a humidification–dehumidification (HDH) desalination unit powered by solar air and water heaters, Energy Convers Manage, 86 (2014) 568–575.
  128. F. Banat, N. Jwaied, M. Rommel, J. Koschikowski, M. Wieghaus, Performance evaluation of the “large SMADES” autonomous desalination solar-driven membrane distillation plant in Aqaba, Jordan, Desalination, 217 (2007) 17–28.
  129. K. Thomas, Overview of village scale, Renew Energy Powered Desalination. National Renewable Energy Laboratory (NREL), 1997.
  130. F. Banat, N. Jwaied, M. Rommel, J. Koschikowski, M. Wieghaus, Desalination by a “compact SMADES” autonomous solar powered membrane distillation unit, Desalination, 217 (2007) 29–37.
  131. M.R. Qtaishat, F. Banat, Desalination by solar powered membrane distillation systems, Desalination, 308 (2013) 186–197.
  132. H.E.S. Fath, S.M. Elsherbiny, A.A. Hassan, M. Rommel, M. Wieghaus, J. Koschikowskib, M. Vatansever, PV and thermally driven small-scale, stand-alone solar desalination systems with very low maintenance needs, Desalination, 225 (2008) 58–69.
  133. J. Koschikowski, M. Wieghaus, M. Rommel, V.S. Ortin,B.P. Suarez, J.R.B., Experimental investigations on solar driven stand-alone membrane distillation systems for remote areas, Desalination, 248 (2009) 125–131.
  134. R.B. Saffarini, E.K. Summers, H.A. Arafat, J.H. Lienhard V, Economic evaluation of stand-alone solar powered membrane distillation systems, Desalination, 299 (2012) 55–62.
  135. S.B. Abdallah, N. Frikha, S. Gabsi, Design of an autonomous solar desalination plant using vacuum membrane distillation, the MEDINA project, Chem. Eng. Res. Design, 91 (2013) 2782–2788.
  136. A. Chafidz, S. Al-Zahran, M.N. Al-Otaibi, C.F. Hoong, T.F. Lai, M. Prabu, Portable and integrated solar-driven desalination system using membrane distillation for arid remote areas in Saudi Arabia, Desalination, 345 (2014) 36–49.
  137. A.H. Beitelmal, D. Fabris, Off-the grid solar-powered portable desalination system, Appl Therm Eng, 85 (2015) 172−178.
  138. T.M. Missimer, Y.D. Kim, R. Rachman, K.C. Ng, Sustainable renewable energy seawater desalination using combined-cycle solar and geothermal heat sources, Desal. Wat Treat 51 (2013) 1161–1170.
  139. H. Yousefi, S.M. Mortazavi, Y. Noorollahi, S.M. Mortazavi, P. Ranjbaran, A Review of Solar-geothermal Hybrid Systems for Water Desalination. Proceedings, 42nd Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, February 13–15, 2017, SGP-TR-212.
  140. K. Zhao, Y. Liu, Theoretical study on multi-effect solar distillation system driven by tidal energy, Desalination, 249 (2009) 566–570.
  141. N. Nikitakos, A.A. Stefanakou, Design and economics of a hybrid desalination system applied to an offshore platform, Rev. Business Econ. Stud., 2 (2014) 100–110.
  142. K.R. Ranjan, S.C. Kaushik, Thermodynamic and economic feasibility of solar ponds for various thermal applications: a comprehensive review, Renew Sustain Energy Rev, 32 (2014) 123–139.
  143. D. Lefebvre, F.H. Tezel, A review of energy storage technologies with a focus on adsorption thermal energy storage processes for heating applications, Renew Sustain Energy Rev, 67 (2017) 116–125.
  144. S. Kuravi, J. Trahan, D.Y. Goswami, M.M. Rahman, E.K. Stefanakos, Thermal energy storage technologies and systems for concentrating solar power plants, Prog Energy Combust. Sci., 39 (2013) 285−319.
  145. C. Prieto, P. Cooper, A.I. Fernández, L.F. Cabeza, Review of technology: thermochemical energy storage for concentrated solar power plants, Renew Sustain Energy Rev, 60 (2016) 909–929.
  146. J.M. Cardemil, F. Cortés, A. Díaz, R. Escobar, Thermodynamic evaluation of solar-geothermal hybrid power plants in northern Chile, Energy Convers Manage, 123 (2016) 348–361.
  147. M.C. Bassetti, D. Consoli, G. Manente, A. Lazzaretto, Design and off-design models of a hybrid geothermal-solar power plant enhanced by a thermal storage, Renew Energy, 128 (2018) 460–472.
  148. N. Bonyadi, E. Johnson, D. Baker. Technoeconomic and exergy analysis of a solar geothermal hybrid electric power plant using a novel combined cycle, Energy Convers Manage, 156 (2018) 542–554.
  149. J.D. McTigue, J. Castro, G. Mungas, N. Kramer, J. King, C. Turchi, G. Zhu. Hybridizing a geothermal power plant with concentrating solar power and thermal storage to increase power generation and dispatchability, Appl. Energy, 228 (2018) 1837–1852.