References

  1. I. Ali, V.K. Gupta, Advances in water treatment by adsorption technology, Nat. Protoc., 1 (2006) 2661–2667.
  2. M.T.M. Pendergast, E.M.V. Hoek, A review of water treatment membrane nanotechnologies, Energy Environ. Sci., 4 (2011) 1946–1971.
  3. Z. Yuan, S. Xie, X. Yu, Y. Pan, S. Li, J. Liu, P. Du, Physicalchemical property and filtration mechanism of the porous polyvinyl chloride composite membrane as filter for waste water treatment, Desal. Wat. Treat., 105 (2018) 35–40.
  4. A. Perez-Vidal, J. Diaz-Gomez, J. Castellanos-Rozo, O.L. Usaquen-Perilla, Long-term evaluation of the performance of four point-of-use water filters, Water Res., 98 (2016) 176–182.
  5. M.N. Chong, B. Jin, C.W.K. Chow, C. Saint, Recent developments in photocatalytic water treatment technology: a review, Water Res., 44 (2010) 2997–3027.
  6. L.L. Fang, B. Valverde-Perez, A. Damgaard, B.G. Plosz, M. Rygaard, Life cycle assessment as development and decision support tool for wastewater resource recovery technology, Water Res., 88 (2016) 538–549.
  7. Z.J. Ren, A.K. Umble, Water treatment: Recover wastewater resources locally, Nature, 529 (2016) 25–25.
  8. D. Bastani, N. Esmaeili, M. Asadollahi, Polymeric mixed matrix membranes containing zeolites as a filler for gas separation applications: a review, J. Ind. Eng. Chem., 19 (2013) 375–393.
  9. M. Rawat, V.K. Bulasara, Synthesis and characterization of lowcost ceramic membranes from fly ash and kaolin for humic acid separation, Korean J. Chem. Eng., 35 (2018) 725–733.
  10. P. Saini, V.K. Bulasara, A.S. Reddy, Performance of a new ceramic microfiltration membrane based on kaolin in textile industry wastewater treatment, Chem. Eng. Commun., 206 (2019) 227–236.
  11. G. Singha, V.K. Bulasara, Preparation of low-cost microfiltration membranes from fly ash, Desal. Wat. Treat., 53 (2015) 1204–1212.
  12. H. Kaura, V.K. Bulasaraa, R.K. Gupta, Preparation of kaolinbased low-cost porous ceramic supports using different amounts of carbonates, Desal. Wat. Treat., 57 (2016) 15154–15163.
  13. H. Kaur, V.K. Bulasara, R.K. Gupta, Effect of carbonates composition on the permeation characteristics of low-cost ceramic membrane supports, J. Ind. Eng. Chem., 44 (2016) 185–194.
  14. W. Li, W. Xing, N. Xu, Modeling of relationship between water permeability and microstructure parameters of ceramic membranes, Desalination, 192 (2006) 340–345.
  15. M.D.M. Innocentini, V.C. Pandolfelli, Permeability of porous ceramics considering the klinkenberg and inertial effects, J. Am. Ceram. Soc., 84 (2001) 941–944.
  16. P. Zhang, L. Hu, J.N. Meegoda, Pore-scale simulation and sensitivity analysis of apparent gas permeability in shale matrix, Materials, 10 (2017) 104–106.
  17. M.D.M Innocentini, P. Sepulveda, V.R. Salvini, V.C. Pandolfelli, Permeability and structure of cellular ceramics: a comparison between two preparation techniques, J. Am. Ceram. Soc., 81 (1998) 3349–3352.
  18. Q. Zhang, W. Jing, Y. Fan, N. Xu, An improved Parks equation for prediction of surface charge properties of composite ceramic membranes, J. Membr. Sci., 318 (2008) 100–106.
  19. M.A. Hubbe, N. Wu, O.J. Rojas, S. Park, Permeation of a cationic polyelectrolyte into mesoporous silica. Part 2. Effects of time and pore size on streaming potential, Colloids Surf., A, 364 (2010) 7–15.
  20. J.V. Nicolini, C.P. Borges, H.C. Ferraz, Selective rejection of ions and correlation with surface properties of nanofiltration membranes, Sep. Purif. Technol., 171 (2016) 238–247.
  21. Z. Ma, M. Wang, X. Gao, C. Gao, Charge and separation characteristics of nanofiltration membrane embracing dissociated functional groups, Front. Environ. Sci. Eng., 8 (2014) 650–658.
  22. B. Xu, J. Chen, Z. Yuan, L. Zhang, Y. Fang, Simulation analysis on the profiles of droplets wetting on the substrates, J. Disper. Sci. Technol., 36 (2015) 1816–1824.
  23. B. Yu, J. Li, A geometry model for tortuosity of flow path in porous media, Chin. Phys. Lett., 21 (2004) 1569–1571.
  24. Q. Zhang, Y. Fan, N. Xu, Effect of the surface properties on filtration performance of Al2O3–TiO2, composite membrane, Sep. Purif. Technol., 66 (2009) 306–312.