References

  1. J. Rockström, M. Falkenmark, L. Karlberg, H. Hoff, S. Rost, D. Gerten, Future water availability for global food production: the potential of green water for increasing resilience to global change, Water Resour. Res., 45 (2009) 1–16.
  2. K. Ikehata, M.G. El-Din, Degradation of recalcitrant surfactants in wastewater by ozonation and advanced oxidation processes: a review, Ozone-Sci. Eng., 26 (2004) 327–343.
  3. L.M. Bellotindos, A.T. Chang, M.C. Lu, Degradation of acetaminophen by different Fenton processes, Desal. Wat. Treat., 56 (2015) 1372–1378.
  4. M.R.D. Khaki, M.S. Shafeeyan, A.A.A. Raman, W.M.A. Wan Daud, Evaluating the efficiency of nano-sized Cu doped TiO2/ZnO photocatalyst under visible light irradiation, J. Mol. Liq., 258 (2018) 354–365.
  5. M.R.D. Khaki, M.S. Shafeeyan, A.A.A. Raman, W.M.A. Wan Daud, Enhanced UV–visible photocatalytic activity of Cu-doped ZnO/TiO2 nanoparticles, J. Mater. Sci. - Mater. Electron., 29 (2018) 5480–5495.
  6. M.R.D. Khaki, M.S. Shafeeyan, A.A.A. Raman, W.M.A. Wan Daud, Application of doped photocatalysts for organic pollutant degradation - A review, J. Environ. Manage., 198 (2017) 78–94.
  7. C. Comninellis, A. Kapalka, S. Malato, S.A. Parsons, I. Poulios, D. Mantzavinos, Advanced oxidation processes for water treatment: advances and trends for R&D, J. Chem. Technol. Biotechnol., 83 (2008) 769–776.
  8. S. Gligorovski, R. Strekowski, S. Barbati, D. Vione, Environmental implications of hydroxyl radicals (•OH), Chem. Rev., 115 (2015) 13051–13092.
  9. H. Zou, W. Ma, Y. Wang, A novel process of dye wastewater treatment by linking advanced chemical oxidation with biological oxidation, Arch. Environ. Prot., 41 (2015) 33–39.
  10. S. Harimurti, B.K. Dutta, I.F.B.M. Ariff, S. Chakrabarti, D. Vione, Degradation of monoethanolamine in aqueous solution by Fenton’s reagent with biological post-treatment, Water. Air. Soil. Pollut., 211 (2010) 273–286.
  11. S. Adishkumar, S. Sivajothi, J. Rajesh Banu, Coupled solar photo-fenton process with aerobic sequential batch reactor for treatment of pharmaceutical wastewater, Desal. Wat. Treat., 48 (2012) 89–95.
  12. J.A. Sánchez Pérez, I.M. Román Sánchez, I. Carra, A. Cabrera Reina, J.L. Casas López, S. Malato, Economic evaluation of a combined photo-Fenton/MBR process using pesticides as model pollutant. Factors affecting costs, J. Hazard. Mater., 244– 245 (2013) 195–203.
  13. S. Esplugas, J. Gimenez, S. Contreras, E. Pascual, M. Rodriguez, Comparison of different advanced oxidation processes for phenol degradation, Water. Res., 36 (2002) 1034–1042.
  14. J.J. Pignatello, E. Oliveros, A. MacKay, Advanced oxidation processes for organic contaminant destruction based on the Fenton reaction and related chemistry, Crit. Rev. Environ. Sci. Tec., 36 (2006) 1–84.
  15. M. Minella, G. Marchetti, E. De Laurentiis, M. Malandrino, V. Maurino, C. Minero, D. Vione, K. Hanna, Photo-Fenton oxidation of phenol with magnetite as iron source, Appl. Catal., B, 154–155 (2014) 102–109.
  16. E. Neyens, J. Baeyens, A review of classic Fenton’s peroxidation as an advanced oxidation technique, J. Hazard. Mater., 98 (2003) 33–50.
  17. F.W. Haber, J. Weiss, The catalytic decomposition of hydrogen peroxide by iron salts, Proc. R. Soc. A-Math. Phys. Eng. Sci., 147 (1934) 332–351.
  18. D. Vione, M. Minella, V. Maurino, C. Minero, Indirect photochemistry in sunlit surface waters: photoinduced production of reactive transient species, Chem. - A Eur. J., 20 (2014) 10590–10606.
  19. L.M. Pastrana-Martínez, N. Pereira, R. Lima, J.L. Faria, H.T. Gomes, A.M.T. Silva, Degradation of diphenhydramine by photo-Fenton using magnetically recoverable iron oxide nanoparticles as catalyst, Chem. Eng. J., 261 (2015) 45–52.
  20. S.C.N. Tang, I.M.C. Lo, Magnetic nanoparticles: essential factors for sustainable environmental applications, Water. Res., 47 (2013) 2613–2632.
  21. S.R. Pouran, A.R.A. Aziz, W.M.A. Wan Daud, M.S. Shafeeyan, Effects of niobium and molybdenum impregnation on adsorption capacity and Fenton catalytic activity of magnetite, RSC. Adv., 5 (2015) 87535–87549.
  22. S.R. Pouran, A. Bayrami, A.R.A. Aziz, W.M.A. Wan Daud, M.S. Shafeeyan, Ultrasound and UV assisted Fenton treatment of recalcitrant wastewaters using transition metal-substitutedmagnetite nanoparticles, J. Mol. Liq., 222 (2016) 1076–1084.
  23. S.R. Pouran, A. Bayrami, A.A.A. Raman, W.M.A. Wan Daud, M.S. Shafeeyan, A. Khataee, Comprehensive study on the influence of molybdenum substitution on characteristics and catalytic performance of magnetite nanoparticles, Res. Chem. Intermed., 44 (2018) 883–900.
  24. S.R. Pouran, A. Bayrami, M.S. Shafeeyan, A.A.A. Raman, W.M.A. Wan Daud, A comparative study on a cationic dye removal through homogeneous and heterogeneous Fenton oxidation systems, Acta. Chim. Slov., 65 (2018) 166–171.
  25. R. Marsac, M. Pasturel, K. Hanna, Reduction kinetics of nitroaromatic compounds by titanium-substituted magnetite, J. Phys. Chem. C., 121 (2017) 11399–11406.
  26. S. Yang, H. He, D. Wu, D. Chen, Y. Ma, X. Li, J. Zhu, P. Yuan, Degradation of Methylene Blue by heterogeneous Fenton reaction using titanomagnetite at neutral pH values: process and affecting factors, Ind. Eng. Chem. Res., 48 (2009) 9915–9921.
  27. Y. Zhong, X. Liang, Y. Zhong, J. Zhu, S. Zhu, P. Yuan, H. He, J. Zhang, Heterogeneous UV/Fenton degradation of TBBPA catalyzed by titanomagnetite: catalyst characterization, performance and degradation products, Water. Res., 46 (2012) 4633–4644.
  28. M. Minella, E. Sappa, K. Hanna, F. Barsotti, V. Maurino, C. Minero, D. Vione, Considerable Fenton and photo-Fenton reactivity of passivated zero-valent iron, RSC. Adv., 6 (2016) 86752–86761.
  29. X. Xue, K. Hanna, C. Despas, F. Wu, N. Deng, Effect of chelating agent on the oxidation rate of PCP in the magnetite/H2O2 system at neutral pH, J. Mol. Catal. A Chem., 311 (2009) 29–35.
  30. J. He, X. Yang, B. Men, D. Wang, Interfacial mechanisms of heterogeneous Fenton reactions catalyzed by iron-based materials: a review, J. Environ. Sci., 39 (2016) 97–109.
  31. G. Busca, S. Berardinelli, C. Resini, L. Arrighi, Technologies for the removal of phenol from fluid streams: a short review of recent developments, J. Hazard. Mater., 160 (2008) 265–288.
  32. G.F. Torres, J.A. Ortega Méndez, D.L. Tinoco, E.D. Marin, J. Araña, J.A. Herrera-Melián, J.M. Doña Rodrígez, J. Pérez Peña, Detoxification of synthetic and real groundwater contaminated with gasoline and diesel using Fenton, photo-Fenton, and biofilters, Desal. Wat. Treat., 57 (2016) 23760–23769.
  33. C.I. Pearce, O. Qafoku, J. Liu, E. Arenholz, S.M. Heald, R.K. Kukkadapu, C.A. Gorski, C.M.B. Henderson, K.M. Rosso, Synthesis and properties of titanomagnetite (Fe3-xTixO4) nanoparticles: a tunable solid-state Fe(II/III) redox system, J. Colloid. Interface. Sci., 387 (2012) 24–38.
  34. W.B. Fortune, M.G. Mellon, Determination of iron with o-phenanthroline: a spectrophotometric study, Ind. Eng. Chem. Anal. Ed., 10 (1938) 60–64.
  35. L. Li, R.K. Goel, Role of hydroxyl radical during electrolytic degradation of contaminants, J. Hazard. Mater., 181 (2010) 521–525.
  36. E.B. Sandel, Colorimetric Determination of Traces’ of Metals, 2nd ed., 1950.
  37. R.K. Adhikamsetty, N.R. Gollapalli, S.B. Jonnalagadda, Complexation kinetics of Fe2+ with 1,10-phenanthroline forming ferroin in acidic solutions, Int. J. Chem. Kinet., 40 (2008) 515–523.
  38. K.A. Riganakos, P.G. Veltsistas, Comparative spectrophotometric determination of the total iron content in various white and red Greek wines, Food. Chem., 82 (2003) 637–643.
  39. J.E. Frew, P. Jones, G. Scholes, Spectrophotometric determination of hydrogen peroxide and organic hydropheroxides at low concentrations in aqueous solution, Anal. Chim. Acta., 155 (1983) 139–150.
  40. X. Xue, K. Hanna, M. Abdelmoula, N. Deng, Adsorption and oxidation of PCP on the surface of magnetite: kinetic experiments and spectroscopic investigations, Appl. Catal. B. Environ., 89 (2009) 432–440.
  41. M. Minella, N. De Bellis, A. Gallo, M. Giagnorio, C. Minero, S. Bertinetti, R. Sethi, A. Tiraferri, D. Vione, Coupling of nanofiltration and thermal Fenton reaction for the abatement of carbamazepine in wastewater, ACS. Omega, 3 (2018) 9407–9418.
  42. R.J. Watts, D. Washington, J. Howsawkeng, F.J. Loge, L. Teel, Comparative toxicity of hydrogen peroxide, hydroxyl radicals, and superoxide anion to Escherichia coli, Adv. Environ. Res., 7 (2003) 961–968.
  43. J.D. Hem, W. Stumm, Stability field diagrams as aids in iron chemistry studies, J. AWWA, 53 (1961) 211–232.
  44. M. Usman, P. Faure, K. Hanna, M. Abdelmoula, C. Ruby, Application of magnetite catalyzed chemical oxidation (Fentonlike and persulfate) for the remediation of oil hydrocarbon contamination, Fuel., 96 (2012) 270–276.
  45. V. Ya, N. Martin, Y.H. Chou, Y.M. Chen, K.H. Choo, S.S. Chen, C.W. Li, Electrochemical treatment for simultaneous removal of heavy metals and organics from surface finishing wastewater using sacrificial iron anode, J. Taiwan. Inst. Chem. Eng., 83 (2018) 107–114.