References
- J. Rockström, M. Falkenmark, L. Karlberg, H. Hoff, S. Rost, D.
Gerten, Future water availability for global food production:
the potential of green water for increasing resilience to global
change, Water Resour. Res., 45 (2009) 1–16.
- K. Ikehata, M.G. El-Din, Degradation of recalcitrant surfactants
in wastewater by ozonation and advanced oxidation processes:
a review, Ozone-Sci. Eng., 26 (2004) 327–343.
- L.M. Bellotindos, A.T. Chang, M.C. Lu, Degradation of
acetaminophen by different Fenton processes, Desal. Wat.
Treat., 56 (2015) 1372–1378.
- M.R.D. Khaki, M.S. Shafeeyan, A.A.A. Raman, W.M.A. Wan
Daud, Evaluating the efficiency of nano-sized Cu doped TiO2/ZnO photocatalyst under visible light irradiation, J. Mol. Liq.,
258 (2018) 354–365.
- M.R.D. Khaki, M.S. Shafeeyan, A.A.A. Raman, W.M.A.
Wan Daud, Enhanced UV–visible photocatalytic activity of
Cu-doped ZnO/TiO2 nanoparticles, J. Mater. Sci. - Mater.
Electron., 29 (2018) 5480–5495.
- M.R.D. Khaki, M.S. Shafeeyan, A.A.A. Raman, W.M.A. Wan
Daud, Application of doped photocatalysts for organic pollutant
degradation - A review, J. Environ. Manage., 198 (2017) 78–94.
- C. Comninellis, A. Kapalka, S. Malato, S.A. Parsons, I. Poulios,
D. Mantzavinos, Advanced oxidation processes for water
treatment: advances and trends for R&D, J. Chem. Technol.
Biotechnol., 83 (2008) 769–776.
- S. Gligorovski, R. Strekowski, S. Barbati, D. Vione,
Environmental implications of hydroxyl radicals (•OH), Chem.
Rev., 115 (2015) 13051–13092.
- H. Zou, W. Ma, Y. Wang, A novel process of dye wastewater
treatment by linking advanced chemical oxidation with
biological oxidation, Arch. Environ. Prot., 41 (2015) 33–39.
- S. Harimurti, B.K. Dutta, I.F.B.M. Ariff, S. Chakrabarti, D.
Vione, Degradation of monoethanolamine in aqueous solution
by Fenton’s reagent with biological post-treatment, Water. Air.
Soil. Pollut., 211 (2010) 273–286.
- S. Adishkumar, S. Sivajothi, J. Rajesh Banu, Coupled solar
photo-fenton process with aerobic sequential batch reactor for
treatment of pharmaceutical wastewater, Desal. Wat. Treat., 48
(2012) 89–95.
- J.A. Sánchez Pérez, I.M. Román Sánchez, I. Carra, A. Cabrera
Reina, J.L. Casas López, S. Malato, Economic evaluation of
a combined photo-Fenton/MBR process using pesticides as
model pollutant. Factors affecting costs, J. Hazard. Mater., 244–
245 (2013) 195–203.
- S. Esplugas, J. Gimenez, S. Contreras, E. Pascual, M. Rodriguez,
Comparison of different advanced oxidation processes for
phenol degradation, Water. Res., 36 (2002) 1034–1042.
- J.J. Pignatello, E. Oliveros, A. MacKay, Advanced oxidation
processes for organic contaminant destruction based on the
Fenton reaction and related chemistry, Crit. Rev. Environ. Sci.
Tec., 36 (2006) 1–84.
- M. Minella, G. Marchetti, E. De Laurentiis, M. Malandrino,
V. Maurino, C. Minero, D. Vione, K. Hanna, Photo-Fenton
oxidation of phenol with magnetite as iron source, Appl. Catal.,
B, 154–155 (2014) 102–109.
- E. Neyens, J. Baeyens, A review of classic Fenton’s peroxidation
as an advanced oxidation technique, J. Hazard. Mater., 98 (2003)
33–50.
- F.W. Haber, J. Weiss, The catalytic decomposition of hydrogen
peroxide by iron salts, Proc. R. Soc. A-Math. Phys. Eng. Sci., 147
(1934) 332–351.
- D. Vione, M. Minella, V. Maurino, C. Minero, Indirect
photochemistry in sunlit surface waters: photoinduced
production of reactive transient species, Chem. - A Eur. J., 20
(2014) 10590–10606.
- L.M. Pastrana-Martínez, N. Pereira, R. Lima, J.L. Faria, H.T.
Gomes, A.M.T. Silva, Degradation of diphenhydramine by
photo-Fenton using magnetically recoverable iron oxide
nanoparticles as catalyst, Chem. Eng. J., 261 (2015) 45–52.
- S.C.N. Tang, I.M.C. Lo, Magnetic nanoparticles: essential factors
for sustainable environmental applications, Water. Res., 47
(2013) 2613–2632.
- S.R. Pouran, A.R.A. Aziz, W.M.A. Wan Daud, M.S. Shafeeyan,
Effects of niobium and molybdenum impregnation on
adsorption capacity and Fenton catalytic activity of magnetite,
RSC. Adv., 5 (2015) 87535–87549.
- S.R. Pouran, A. Bayrami, A.R.A. Aziz, W.M.A. Wan Daud, M.S.
Shafeeyan, Ultrasound and UV assisted Fenton treatment of
recalcitrant wastewaters using transition metal-substitutedmagnetite
nanoparticles, J. Mol. Liq., 222 (2016) 1076–1084.
- S.R. Pouran, A. Bayrami, A.A.A. Raman, W.M.A. Wan Daud,
M.S. Shafeeyan, A. Khataee, Comprehensive study on the
influence of molybdenum substitution on characteristics and
catalytic performance of magnetite nanoparticles, Res. Chem.
Intermed., 44 (2018) 883–900.
- S.R. Pouran, A. Bayrami, M.S. Shafeeyan, A.A.A. Raman,
W.M.A. Wan Daud, A comparative study on a cationic dye
removal through homogeneous and heterogeneous Fenton
oxidation systems, Acta. Chim. Slov., 65 (2018) 166–171.
- R. Marsac, M. Pasturel, K. Hanna, Reduction kinetics of
nitroaromatic compounds by titanium-substituted magnetite,
J. Phys. Chem. C., 121 (2017) 11399–11406.
- S. Yang, H. He, D. Wu, D. Chen, Y. Ma, X. Li, J. Zhu, P. Yuan,
Degradation of Methylene Blue by heterogeneous Fenton
reaction using titanomagnetite at neutral pH values: process
and affecting factors, Ind. Eng. Chem. Res., 48 (2009) 9915–9921.
- Y. Zhong, X. Liang, Y. Zhong, J. Zhu, S. Zhu, P. Yuan, H. He,
J. Zhang, Heterogeneous UV/Fenton degradation of TBBPA
catalyzed by titanomagnetite: catalyst characterization,
performance and degradation products, Water. Res., 46 (2012)
4633–4644.
- M. Minella, E. Sappa, K. Hanna, F. Barsotti, V. Maurino, C.
Minero, D. Vione, Considerable Fenton and photo-Fenton
reactivity of passivated zero-valent iron, RSC. Adv., 6 (2016)
86752–86761.
- X. Xue, K. Hanna, C. Despas, F. Wu, N. Deng, Effect of chelating
agent on the oxidation rate of PCP in the magnetite/H2O2 system
at neutral pH, J. Mol. Catal. A Chem., 311 (2009) 29–35.
- J. He, X. Yang, B. Men, D. Wang, Interfacial mechanisms of
heterogeneous Fenton reactions catalyzed by iron-based
materials: a review, J. Environ. Sci., 39 (2016) 97–109.
- G. Busca, S. Berardinelli, C. Resini, L. Arrighi, Technologies
for the removal of phenol from fluid streams: a short review of
recent developments, J. Hazard. Mater., 160 (2008) 265–288.
- G.F. Torres, J.A. Ortega Méndez, D.L. Tinoco, E.D. Marin, J.
Araña, J.A. Herrera-Melián, J.M. Doña Rodrígez, J. Pérez Peña,
Detoxification of synthetic and real groundwater contaminated
with gasoline and diesel using Fenton, photo-Fenton, and
biofilters, Desal. Wat. Treat., 57 (2016) 23760–23769.
- C.I. Pearce, O. Qafoku, J. Liu, E. Arenholz, S.M. Heald, R.K.
Kukkadapu, C.A. Gorski, C.M.B. Henderson, K.M. Rosso,
Synthesis and properties of titanomagnetite (Fe3-xTixO4)
nanoparticles: a tunable solid-state Fe(II/III) redox system, J.
Colloid. Interface. Sci., 387 (2012) 24–38.
- W.B. Fortune, M.G. Mellon, Determination of iron with
o-phenanthroline: a spectrophotometric study, Ind. Eng. Chem.
Anal. Ed., 10 (1938) 60–64.
- L. Li, R.K. Goel, Role of hydroxyl radical during electrolytic
degradation of contaminants, J. Hazard. Mater., 181 (2010)
521–525.
- E.B. Sandel, Colorimetric Determination of Traces’ of Metals,
2nd ed., 1950.
- R.K. Adhikamsetty, N.R. Gollapalli, S.B. Jonnalagadda,
Complexation kinetics of Fe2+ with 1,10-phenanthroline forming
ferroin in acidic solutions, Int. J. Chem. Kinet., 40 (2008) 515–523.
- K.A. Riganakos, P.G. Veltsistas, Comparative spectrophotometric
determination of the total iron content in various white and red
Greek wines, Food. Chem., 82 (2003) 637–643.
- J.E. Frew, P. Jones, G. Scholes, Spectrophotometric determination
of hydrogen peroxide and organic hydropheroxides at low
concentrations in aqueous solution, Anal. Chim. Acta., 155
(1983) 139–150.
- X. Xue, K. Hanna, M. Abdelmoula, N. Deng, Adsorption
and oxidation of PCP on the surface of magnetite: kinetic
experiments and spectroscopic investigations, Appl. Catal. B.
Environ., 89 (2009) 432–440.
- M. Minella, N. De Bellis, A. Gallo, M. Giagnorio, C. Minero,
S. Bertinetti, R. Sethi, A. Tiraferri, D. Vione, Coupling of
nanofiltration and thermal Fenton reaction for the abatement of
carbamazepine in wastewater, ACS. Omega, 3 (2018) 9407–9418.
- R.J. Watts, D. Washington, J. Howsawkeng, F.J. Loge, L. Teel,
Comparative toxicity of hydrogen peroxide, hydroxyl radicals,
and superoxide anion to Escherichia coli, Adv. Environ. Res., 7
(2003) 961–968.
- J.D. Hem, W. Stumm, Stability field diagrams as aids in iron
chemistry studies, J. AWWA, 53 (1961)
211–232.
- M. Usman, P. Faure, K. Hanna, M. Abdelmoula, C. Ruby,
Application of magnetite catalyzed chemical oxidation (Fentonlike
and persulfate) for the remediation of oil hydrocarbon
contamination, Fuel., 96 (2012) 270–276.
- V. Ya, N. Martin, Y.H. Chou, Y.M. Chen, K.H. Choo, S.S. Chen,
C.W. Li, Electrochemical treatment for simultaneous removal of
heavy metals and organics from surface finishing wastewater
using sacrificial iron anode, J. Taiwan. Inst. Chem. Eng., 83
(2018) 107–114.