References

  1. T. Hadibarata, R.A. Kristanti, Effect of environmental factors in the decolorization of Remazol Brilliant Blue R by polyporus SP. S133, J. Chil. Chem. Soc., 57 (2012) 1095–1098.
  2. T. Robinson, G. McMullan, R. Marchant, P. Nigam, Remediation of dyes in textile effluent: a critical review on current treatment technologies with a proposed alternative, Bioresour. Technol., 77 (2001) 247–255.
  3. F. Vacchi, J.Vendemiatti, V. Brosselin, B. Da Silva, M. Zanoni, M. De Meo, S. Bony, A. Devaux, G. Umbuzeiro, Combining different assays and chemical analysis to characterize the genotoxicity of waters impacted by textile discharges, Environ. Mol. Mutagen., 57 (2016) 559–571.
  4. A. Asghar, A. Aziz, A. Raman, W. Ashri, W. Daud, Advanced oxidation processes for in-situ production of hydrogen peroxide/hydroxyl radical for textile wastewater treatment: a review, J. Cleaner. Prod., 87 (2015) 826–838.
  5. D.I. Ҫifҫi, Decolorization of methylene blue and methyl orange with Ag doped TiO2 under UV-A and UV-visible conditions: process optimization by response surface method and toxicity evaluation, Global Nest J., 18 (2016) 371–380.
  6. J. Hwanga, S. Kalanurb, H. Seo, Identification of visible photocatalytic and photoelectrochemical properties of I-TiO2 via electronic band structure, Electrochim. Acta., 252 (2017) 482–489.
  7. S. Dong, J. Feng, M. Fan, Y. Pi, L. Hu, X. Han, M. Liu, J. Sun, J.H. Sun, Recent developments in heterogeneous photocatalytic water treatment using visible light-responsive photocatalysts: a review, R.S.C. Adv., 19 (2015) 14610–14630.
  8. X. Dong, W. Zhang, Y. Sun, J. Li, W. Cen, Z. Cui, H. Huang, F. Dong, Visible-light-induced charge transfer pathway and photocatalysis mechanism on Bi semimetal@defectiveBiOBr hierarchical microspheres, J. Catal., 357 (2018) 41–50.
  9. D. Nassoko, Y. Li, H. Wang, J. Li, Y. Li, Y. Yu, Nitrogen-doped TiO2 nanoparticles by using EDTA as nitrogen source and soft template: simple preparation, mesoporous structure, and photocatalytic activity under visible light, J. Alloys. Comp., 540 (2012) 228–235.
  10. P. Pattanaika, M. Sahoob, TiO2 photocatalysis: progress from fundamentals to modification Technology, Desal. Wat. Treat., 52 (2014) 6567–6590.
  11. X. Wen, N. Cheng, L. Zhang, Ch. Liang, G. Zeng, An in depth mechanism insight of the degradation of multiple refractory pollutants via a novel SrTiO3/BiOI heterojunction photocatalysts, J. Catal., 356 (2017) 283–299.
  12. T. Putta, M. Lu, J. Anotai, Characterization and activity of visible-light driven TiO2 photocatalyst doped with tungsten, Water. Sci. Technol., 62 (2010) 2128–2133.
  13. R. Khoshnavazi, S. Fereydouni, L. Bahrami, Enhanced photocatalytic activity of nanocomposites of TiO2 doped with Zr, Y or Cepolyoxometalates for degradation of methyl orange dye, Water. Sci. Technol., 73 (2016) 1746–1755.
  14. P. Nyamukamba, L. Tichagwa, S.Mamphweli, L.Petrik, Silver/carbon codoped titanium dioxide photocatalyst for improved dye degradation under visible light, Int. J. Photoenergy., (2017) 1–9. doi:10.1155/2017/3079276.
  15. U. Pal, A. Sandoval, S. Madrid, G. Corro, V. Sharma, P. Mohanty, Mixed titanium, silicon, and aluminum oxide nanostructures as noveladsorbent for removal of rhodamine 6G and methylene blue ascationic dyes from aqueous solution, Chemosphere, 163 (2016) 142–152.
  16. G. Pozan, M. Isleyen, S. Gokcen, Transition metal-coated TiO2 nanoparticles: synthesis, characterization and their photocatalytic activity, Appl. Catal., B., 140–141 (2013) 537–545.
  17. F. Venditti, F. Cuomo, A. Ceglie, P. Avino, M. Russo, F. Lopez, Visible light caffeic acid degradation by carbon-doped titanium dioxide, Langmuir, 31 (2015) 3627−3634.
  18. G. Cinelli, F. Cuomo, L. Ambrosone, M. Colella, A. Ceglie, F. Vendittia, F. Lopez, Photocatalytic degradation of a model textile dye using carbon-doped titanium dioxide and visible light, J. Water. Process. Eng., 20 (2017) 71–77.
  19. W. Ren, Z. Ai, F. Jia, L. Zhang, X. Fan, Z. Zou, Low temperature preparation and visible light photocatalytic activity of mesoporous carbon-doped crystalline TiO2, Appl. Catal., B., 69 (2007) 138–144.
  20. H. Wang, X. Gao, G.Duan, X. Yang, X. Liu, Facile preparation of anatase-brookite-rutile mixed-phase N-doped TiO2 with high visible-light photocatalytic activity, J. Environ. Chem. Eng., 3 (2015) 603–608.
  21. M. Mohamad, W. Salleh, J. Jaafar, A. Ismail, Photodegradation of phenol by N-doped TiO2 anatase/rutile nanorods assembled microsphere under UV and visible light irradiation, Mater. Chem. Phys., 162 (2015) 113–123.
  22. R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, Y. Taga, Visible-light photocatalysis in nitrogen-doped titanium oxides, Science, 293 (2001) 269–271.
  23. O. Sacco, V. Vaiano, L. Rizzo, D. Sannino, Photocatalytic activity of a visible light active structured photocatalyst developed for municipal wastewater treatment, J. Cleaner. Prod., 175 (2018) 38–49.
  24. Y. Liu, X. Chen, J. Li, C. Burda, Photocatalytic degradation of azo dyes by nitrogen-doped TiO2 nanocatalysts, Chemosphere, 61 (2015) 11–18.
  25. L. Gomathi, R. Kavitha, A review on non-metal ion doped titania for the photocatalytic degradation of organic pollutants under UV/solar light: role of photogenerated charge carrier dynamics in enhancing the activity, Appl. Catal., B., 140–141 (2013) 559–587.
  26. M.C. Yeber, C. Escalona, A. Núñez, P. Medina, Photocatalytic activity under visible light to transform As (III) with nitrogendoped TiO2 nanoparticles, using urea as a nitrogen source. Optimization by multivariate analysis, Desal. Wat. Treat., 107 (2018) 218–222.
  27. N. Kaur, S. Kaur, V. Singh, Preparation, characterization and photocatalytic degradation kinetics of Reactive Red dye 198 using N, Fe codoped TiO2 nanoparticles under visible Light, Desal. Wat. Treat., 57 (2015) 1–10.
  28. N. Tzikalos, V. Belessi, D. Lambropoulou, Photocatalytic degradation of reactive Red 195 using brookite/anatase TiO2 mesoporous nanoparticles: optimization using response surface methodology (RMS) and kinetics studies, Environ. Sci. Pollut. Res., 20 (2013) 2305–2320.
  29. S. Singh, R. Sharma, B. Mehta, Enhanced surface area, high Zn interstitial defects and band gap reduction in N-doped ZnO nanosheets coupled with BiVO4 leads to improved photocatalytic performance, Appl. Surf. Sci., 411 (2017) 321–330.
  30. Z. Cheng, S. Han, Preparation and photoelectrocatalytic performance of N-doped TiO2/NaY zeolite membrane composite electrode material, Water. Sci. Technol., 73 (2016) 486–492.
  31. T. Le, T. Nguyen, Z. Yacouba, L. Zoungrana, F. Avril, E. Petit, J. Mendret, V. Bonniol, M. Bechelany, S. Lacour, G. Lesage, M. Cretin, Toxicity removal assessments related to degradation pathways of azo dyes: toward an optimization of electro-Fenton treatment, Chemosphere, 161 (2005) 308–318.