References

  1. B. Yang, H. Xu, S. Yang, S. Bi, F. Li, C. Shen, C. Ma, Q. Tian, J. Liu, X. Song, W. Sang, Y. Liu, Treatment of industrial dyeing wastewater with a pilot-scale strengthened circulation anaerobic reactor, Bioresour. Technol., 264 (2018) 154–162.
  2. Y. Zhu, J. Xu, X. Cao, Y. Cheng, Characterization of functional microbial communities involved in different transformation stages in a full-scale printing and dyeing wastewater treatment plant, Biochem. Eng. J., 137 (2018) 162–171.
  3. B. Louhichi, N. Bensalah, Comparative study of the treatment of printing ink wastewater by conductive-diamond electrochemical oxidation, Fenton process, and ozonation, Sustainable. Environ. Res., 24 (2014) 49–58.
  4. Z. Liu, Y. Chen, S. Hu, J. Qiu, Y. Meng, L. Li, Degradation of painting ink wastewater in a tubular reactor with electrochemical treatment, Chem. Eng. Transact., 55 (2016) 85–90.
  5. A. Mukimin, N. Zen, A. Purwanto, K.A. Wicaksono, H. Vistanty, A.S Alfauzi, Application of a full-scale electrocatalytic reactor as real batik printing wastewater treatment by indirect oxidation process, J. Environ. Chem. Eng., 5 (2017) 5222–5232.
  6. Q. Chen, Y. Zhang, D. Zhang, Y. Yang, Ag and N co-doped TiO2 nanostructured photocatalyst for printing and dyeing wastewater, J. Water. Process. Eng., 16 (2017) 14–20.
  7. J. Roussy, P. Chastellan, M.V. Vooren, E. Guibal, Treatment of ink-containing wastewater by coagulation/flocculation using biopolymers, Water. SA., 31 (2005) 369–376.
  8. H.D. Ryu, D. Kim, S.I. Lee, Application of struvite precipitation in treating ammonium nitrogen from semiconductor wastewater, J. Hazard. Mater., 156 (2008) 163–169.
  9. T. Zhang, L. Ding, H. Ren, X. Xiong, Ammonium nitrogen removal from coking wastewater by chemical precipitation recycle technology, Water. Res., 43 (2009) 5209–5215.
  10. J. Hou, X. Wang, J. Wang, L.Xia, Y. Zhang, D. Li, X. Ma, Pathway governing nitrogen removal in artificially aerated constructed wetlands: impact of aeration mode and influent chemical oxygen demand to nitrogen ratios, Bioresour. Technol., 257 (2018) 137–146.
  11. X. Liu, Y. Zhang, X. Li, C. Fu, T. Shi, P. Yan, Effects of influent nitrogen loads on nitrogen and COD removal in horizontal subsurface flow constructed wetlands during different growth periods of Phragmites australis, Sci. Total. Environ., 635 (2018) 1360–1366.
  12. W. Sriprapat, S. Kullavanijaya, S. Techkarnjanaruk, P. Thiravetyan, Diethylene glycol removal by Echinodorus cordifolius (L.): the role of plant–microbe interactions, J. Hazard. Mater., 185 (2011) 1066–1072.
  13. D.H. Shahi, H. Eslami, M.H. Ehrampoosh, A. Ebrahimi, M.T. Ghaneian, S. Ayatollah, M.R. Mozayan, Comparing the efficiency of Cyperus alternifolius and Phragmites australis in municipal wastewater treatment by subsurface constructed wetland, Pak. J. Biol. Sci., 16 (2013) 379–384
  14. A.K. Anning, P.E. Korsah, P. Addo-Fordjour, Phytoremediation of wastewater with Limnocharis flava, Thalia geniculate and Typha latifolia in constructed wetlands, Int. J. Phytoremediation., 15 (2013) 452–464.
  15. P. Tararag, B. Hans, J. Arunothai, Treatment of anaerobic digester effluent using Acorus calamus: effects on plant growth and tissue, Plants. (Basel)., 7 (2018) 36.
  16. S. Saiyood, A.S. Vangnai, P. Thiravetyan, D. Inthorn, Bisphenol A removal by the Dracaena plant and the role of plant-associating bacteria, J. Hazard. Mater., 178 (2010) 777–785.
  17. M. Hove, R.P. van Hille, A.E. Lewis, Iron solids formed from oxidation precipitation of ferrous sulfate solutions, AIChE J., 53 (2007) 2569–2577.
  18. Z. Liang, Y. Wang, Y. Zhou, H. Liu, Coagulation removal of melanoidins from biologically treated molasses wastewater using ferric chloride, Chem. Eng. J., 152 (2009) 88–94.
  19. L. Tengrui, A.F. Al-Harbawi, H. Qiang, Z. Jun, Comparison between biological treatment and chemical precipitation for nitrogen removal from old landfill leachate, Am. J. Environ. Sci., 3 (2007) 183–187.
  20. APHA/AWWA/WEF, Standard Methods for the Examination of Water and Wastewater, 29th ed., American Public Health Association. (APHA), Washington, D.C., 1998.
  21. M.W. Zdybiewska, B. Kula, Removal of ammonia nitrogen by the precipitation method, on the example of some selected waste waters, Water. Sci. Technol., 24(1991) 229–234.
  22. G.E. Diwani, Sh.E. Rafie, N.N.E. Ibiari, H.I. El-Aila, Recovery of ammonia nitrogen from industrial wastewater treatment as struvite slow releasing fertilizer, Desalination, 214 (2007) 200–214.
  23. M. Altinbas, C. Yangin, I. Ozturk, Struvite precipitation from anaerobically treated municipal and landfill wastewaters, Wat. Sci. Technol., 46 (2002) 271–278.
  24. X.Z. Li, Q.L. Zhao, Recovery of ammonium–nitrogen from landfill leachate as a multi–nutrient fertilizer, Ecol. Eng., 20 (2003) 171–181.
  25. R. Schulze-Rettmer, The simultaneous chemical precipitation of ammonium and phosphate in the form of magnesium–ammonium–phosphate, Wat. Sci. Technol., 23 (1991) 659–667.
  26. C. Prum, R. Dolphen, P. Thiravetyan, Enhancing arsenic removal from arsenic–contaminated water by Echinodorus cordifolius–endophytic Arthrobacter creatinolyticus interactions, J. Environ. Manage., 213 (2018) 11–19.
  27. J.K. Zhu, Plant salt tolerance, Trends. Plant. Sci., 6 (2001) 66–71.
  28. W.G. Hopkins, N.P.A. Hüner, Introduction to plant physiology, 3rd ed., 2004. John Wiley and Sons, Inc. p. 250.
  29. M.R. McAinsh, J.K. Pittman, Shaping the calcium signature, New. Phytol., 181 (2009) 275–294.
  30. A.N. Dodd, J. Kudla, D. Sanders, The language of calcium signaling, Annu. Rev. Plant. Biol., 61 (2010) 593–620.