References
- B. Yang, H. Xu, S. Yang, S. Bi, F. Li, C. Shen, C. Ma, Q. Tian,
J. Liu, X. Song, W. Sang, Y. Liu, Treatment of industrial
dyeing wastewater with a pilot-scale strengthened circulation
anaerobic reactor, Bioresour. Technol., 264 (2018) 154–162.
- Y. Zhu, J. Xu, X. Cao, Y. Cheng, Characterization of functional
microbial communities involved in different transformation
stages in a full-scale printing and dyeing wastewater treatment
plant, Biochem. Eng. J., 137 (2018) 162–171.
- B. Louhichi, N. Bensalah, Comparative study of the
treatment of printing ink wastewater by conductive-diamond
electrochemical oxidation, Fenton process, and ozonation,
Sustainable. Environ. Res., 24 (2014) 49–58.
- Z. Liu, Y. Chen, S. Hu, J. Qiu, Y. Meng, L. Li, Degradation of
painting ink wastewater in a tubular reactor with electrochemical
treatment, Chem. Eng. Transact., 55 (2016) 85–90.
- A. Mukimin, N. Zen, A. Purwanto, K.A. Wicaksono, H.
Vistanty, A.S Alfauzi, Application of a full-scale electrocatalytic
reactor as real batik printing wastewater treatment by indirect
oxidation process, J. Environ. Chem. Eng., 5 (2017) 5222–5232.
- Q. Chen, Y. Zhang, D. Zhang, Y. Yang, Ag and N co-doped
TiO2 nanostructured photocatalyst for printing and dyeing
wastewater, J. Water. Process. Eng., 16 (2017) 14–20.
- J. Roussy, P. Chastellan, M.V. Vooren, E. Guibal, Treatment of
ink-containing wastewater by coagulation/flocculation using
biopolymers, Water. SA., 31 (2005) 369–376.
- H.D. Ryu, D. Kim, S.I. Lee, Application of struvite precipitation
in treating ammonium nitrogen from semiconductor
wastewater, J. Hazard. Mater., 156 (2008) 163–169.
- T. Zhang, L. Ding, H. Ren, X. Xiong, Ammonium nitrogen
removal from coking wastewater by chemical precipitation
recycle technology, Water. Res., 43 (2009) 5209–5215.
- J. Hou, X. Wang, J. Wang, L.Xia, Y. Zhang, D. Li, X. Ma, Pathway
governing nitrogen removal in artificially aerated constructed
wetlands: impact of aeration mode and influent chemical
oxygen demand to nitrogen ratios, Bioresour. Technol., 257
(2018) 137–146.
- X. Liu, Y. Zhang, X. Li, C. Fu, T. Shi, P. Yan, Effects of influent
nitrogen loads on nitrogen and COD removal in horizontal
subsurface flow constructed wetlands during different growth
periods of Phragmites australis, Sci. Total. Environ., 635 (2018)
1360–1366.
- W. Sriprapat, S. Kullavanijaya, S. Techkarnjanaruk, P.
Thiravetyan, Diethylene glycol removal by Echinodorus
cordifolius (L.): the role of plant–microbe interactions, J. Hazard.
Mater., 185 (2011) 1066–1072.
- D.H. Shahi, H. Eslami, M.H. Ehrampoosh, A. Ebrahimi,
M.T. Ghaneian, S. Ayatollah, M.R. Mozayan, Comparing the
efficiency of Cyperus alternifolius and Phragmites australis in
municipal wastewater treatment by subsurface constructed
wetland, Pak. J. Biol. Sci., 16 (2013) 379–384
- A.K. Anning, P.E. Korsah, P. Addo-Fordjour, Phytoremediation
of wastewater with Limnocharis flava, Thalia geniculate and Typha
latifolia in constructed wetlands, Int. J. Phytoremediation., 15
(2013) 452–464.
- P. Tararag, B. Hans, J. Arunothai, Treatment of anaerobic
digester effluent using Acorus calamus: effects on plant growth
and tissue, Plants. (Basel)., 7 (2018) 36.
- S. Saiyood, A.S. Vangnai, P. Thiravetyan, D. Inthorn, Bisphenol
A removal by the Dracaena plant and the role of plant-associating bacteria, J. Hazard. Mater., 178 (2010) 777–785.
- M. Hove, R.P. van Hille, A.E. Lewis, Iron solids formed from
oxidation precipitation of ferrous sulfate solutions, AIChE J., 53
(2007) 2569–2577.
- Z. Liang, Y. Wang, Y. Zhou, H. Liu, Coagulation removal of
melanoidins from biologically treated molasses wastewater
using ferric chloride, Chem. Eng. J., 152 (2009) 88–94.
- L. Tengrui, A.F. Al-Harbawi, H. Qiang, Z. Jun, Comparison
between biological treatment and chemical precipitation for
nitrogen removal from old landfill leachate, Am. J. Environ. Sci.,
3 (2007) 183–187.
- APHA/AWWA/WEF, Standard Methods for the Examination
of Water and Wastewater, 29th ed., American Public Health
Association. (APHA), Washington, D.C., 1998.
- M.W. Zdybiewska, B. Kula, Removal of ammonia nitrogen
by the precipitation method, on the example of some selected
waste waters, Water. Sci. Technol., 24(1991) 229–234.
- G.E. Diwani, Sh.E. Rafie, N.N.E. Ibiari, H.I. El-Aila, Recovery
of ammonia nitrogen from industrial wastewater treatment
as struvite slow releasing fertilizer, Desalination, 214 (2007)
200–214.
- M. Altinbas, C. Yangin, I. Ozturk, Struvite precipitation from
anaerobically treated municipal and landfill wastewaters, Wat.
Sci. Technol., 46 (2002) 271–278.
- X.Z. Li, Q.L. Zhao, Recovery of ammonium–nitrogen from
landfill leachate as a multi–nutrient fertilizer, Ecol. Eng., 20
(2003) 171–181.
- R. Schulze-Rettmer, The simultaneous chemical precipitation
of ammonium and phosphate in the form of magnesium–ammonium–phosphate, Wat. Sci. Technol., 23 (1991) 659–667.
- C. Prum, R. Dolphen, P. Thiravetyan, Enhancing arsenic removal
from arsenic–contaminated water by Echinodorus cordifolius–endophytic Arthrobacter creatinolyticus interactions, J. Environ.
Manage., 213 (2018) 11–19.
- J.K. Zhu, Plant salt tolerance, Trends. Plant. Sci., 6 (2001) 66–71.
- W.G. Hopkins, N.P.A. Hüner, Introduction to plant physiology,
3rd ed., 2004. John Wiley and Sons, Inc. p. 250.
- M.R. McAinsh, J.K. Pittman, Shaping the calcium signature,
New. Phytol., 181 (2009) 275–294.
- A.N. Dodd, J. Kudla, D. Sanders, The language of calcium
signaling, Annu. Rev. Plant. Biol., 61 (2010) 593–620.