References

  1. P.M. Armstrong, M. Uapipatanakul, I. Thompson, D. Ager, M. McCulloch, Thermal and sanitary performance of domestic hot water cylinders: conflicting requirements, Appl. Energ., 131 (2014) 171–179.
  2. L.K. Bagh, H. Albrechtsen, E. Arvin, K. Ovesen, Distribution of bacteria in a domestic hot water system in a Danish apartment building, Water Res., 38 (2004) 225–235.
  3. P. Borella, M.T. Montagna, V. Romano-Spica, S. Stampi, G. Stancanelli, M. Triassi, R. Neglia, I. Marchesi, G.D. Tato, C. Napoli, G. Quaranta, P. Laurenti, E. Leoni, G.D. Luca, C. Ossi, M. Moro, G.R. Dalcala, Legionella infection risk from domestic hot water, Emerg. Infect. Dis., 10 (2004) 457–464.
  4. M.J. Nieuwenhuijsen, M. David, G. James, B. James, N.B. Nicky, I. Nina, V. Martine, B.T. Mireille, Chlorination disinfection by-products in drinking water and congenital anomalies: review and meta-analyses, Environ. Health. Persp., 117 (2009) 1486–1493.
  5. P. Roccaro, H. Chang, F.G. Vagliasindi, G.V. Korshin, Differential absorbance study of effects of temperature on chlorine consumption and formation of disinfection by-products in chlorinated water, Water Res., 42 (2008) 1879–1888.
  6. Y. Choi, Y.J. Choi, The effects of UV disinfection on drinking water quality in distribution systems, Water Res., 44 (2010) 115–122.
  7. S.P. Pathak, K. Gopal, Evaluation of bactericidal efficacy of silver ions on Escherichia coli for drinking water disinfection, Environ. Sci. Pollut. R., 19 (2012) 2285–2290.
  8. Q.L. Feng, J. Wu, G.Q. Chen, F.Z. Cui, T.N. Kim, J.O. Kim, A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus, J. Biomed. Mater. Res., 52 (2000) 662–668.
  9. A.D. Russell, W.B. Hugo, 7 Antimicrobial activity and action of silver, Prog. Med. Chem., 31 (1994) 351–370.
  10. Y. Inoue, M. Hoshino, H. Takahashi, T. Noguchi, T. Murata, Y. Kanzaki, H. Hamashima, M. Sasatsu, Bactericidal activity of Ag–zeolite mediated by reactive oxygen species under aerated conditions, J. Inorg. Biochem., 92 (2002) 37–42.
  11. T.Q. Tuan, N.V. Son, H.T.K. Dung, N.H. Luong, B.T. Thuy, N.T.V. Anh, N.D. Hoa, N.H. Hai, Preparation and properties of silver nanoparticles loaded in activated carbon for biological and environmental applications, J. Hazard. Mater., 192 (2011) 1321–1329.
  12. E. Altintig, G. Arabaci, H. Altundag, Preparation and characterization of the antibacterial efficiency of silver loaded activated carbon from corncobs, Surf. Coat. Tec., 304 (2016) 63–67.
  13. Y. Ma, T. Zhou, C. Zhao, Preparation of chitosan-nylon-6 blended membranes containing silver ions as antibacterial materials, Carbohyd. Res., 343 (2008) 230–237.
  14. H. Lu, J. Wang, M. Stoller, T. Wang, Y. Bao, H. Hao, An overview of nanomaterials for water and wastewater treatment, Adv. Mater. Sci. Eng, 2016 (2016) 1–10.
  15. D.V. Halem, H.V.D. Laan, S.G.J. Heijman, J.C.V. Dijk, G.L. Amy, Assessing the sustainability of the silver-impregnated ceramic pot filter for low-cost household drinking water treatment, Phys. Chem. Earth., 34 (2009) 36–42.
  16. N. Silvestry-Rodriguez, K.R. Bright, D.C. Slack, D.R. Uhlmann, A.C.P. Gerba, Silver as a residual disinfectant to prevent biofilm formation in water distribution systems, Appl. Environ. Microb., 74 (2008) 1639–1641.
  17. X. Zhou, C. Wang, H. Huang, X. Ji, B. Wu, Extensive adsorption of the lighter homologue tellurium of polonium from wastewater using porous silver layer deposited stainless steel mesh, Prog. Nucl. Energ., 98 (2017) 285–292.
  18. M. Petala, V. Tsiridis, I. Mintsouli, N. Pliatsikas, T. Spanos, P. Rebeyre, E. Darakas, P. Patsalas, G. Vourlias, M. Kostoglou, S. Sotiropoulos, T. Karapantsios, Silver deposition on stainless steel container surfaces in contact with disinfectant silver aqueous solutions, Appl. Surf. Sci., 396 (2017) 1067–1075.
  19. P. Staroń, J. Chwastowski, M. Banach, Sorption and desorption studies on silver ions from aqueous solution by coconut fiber, J. Cleaner. Prod., 149 (2017) 290–301.
  20. M. Yoosefian, S. Ahmadzadeh, M. Aghasi, M. Dolatabadi, Optimization of electrocoagulation process for efficient removal of ciprofloxacin antibiotic using iron electrode; kinetic and isotherm studies of adsorption, J. Mol. Liq., 225 (2017) 544–553.
  21. Y.S. Ho, G. Mckay, Pseudo-Second Order Model for Sorption Process, Process Biochem., 34 (1999) 451–465.
  22. H.I. Inyang, A. Onwawoma, S. Bae, The Elovich equation as a predictor of lead and cadmium sorption rates on contaminant barrier minerals, Soil. Tillage. Res., 155 (2016) 124–132.
  23. A.M.K. Pandian, C. Karthikeyan, M. Rajasimman, Isotherm and kinetic studies on nano-sorption of malachite green onto Aspergillus flavus mediated synthesis of silver nano particles, Biocatal. Agric. Biotechnol., 8 (2016) 171–181.
  24. Y. Li, Q. Yue, B. Gao, J. Yang, Y. Zheng, Adsorption kinetics of reactive dyes on activated carbon fiber, Environ. Sci., 28 (2007) 2637–2641.
  25. X. Song, P. Gunawan, R. Jiang, S.S.J. Leong, K. Wang, R. Xu, Surface activated carbon nanospheres for fast adsorption of silver ions from aqueous solutions, J. Hazard. Mater., 194 (2011) 162–168.
  26. A.O. Dada, Langmuir, Freundlich, Temkin and Dubinin–Radushkevich isotherms studies of equilibrium sorption of Zn2+ unto phosphoric acid modified rice husk, Russ. J. Appl. Chem., 3 (2012) 38–45.
  27. S.M. Mousa, N.S. Ammar, H.A. Ibrahim, Removal of lead ions using hydroxyapatite nano-material prepared from phosphogypsum waste, J. Saudi Chem. Soc., 20 (2016) 357–365.
  28. M.J. Temkin, V. Pyzhev, Recent modifications to Langmuir isotherms, Acta Physiochim URSS, 12 (1940) 217–222.
  29. H.D. Setiabudi, R. Jusoh, S.F.R.M. Suhaimi, S.F. Masrur, Adsorption of methylene blue onto oil palm (Elaeis guineensis) leaves: process optimization, isotherm, kinetics and thermodynamic studies, J. Taiwan Inst. Chem. Eng., 63 (2016) 363–370.
  30. C. Jeon, J.H. Cha, J.Y. Choi, Adsorption and recovery of immobilized coffee ground beads for silver ions from industrial wastewater, J. Ind. Eng. Chem., 53 (2017) 261–267.
  31. Z. Yu, A. Zhou, J. Qu, T. Zhang, Study on behavior and kinetics of sorption of Ag+ by Shenfu3−1 coal, Microporous. Mesorporous. Mater., 85 (2005) 104–110.
  32. H. Zheng, D. Liu, Y. Zheng, S. Liang, Z. Liu, Sorption isotherm and kinetic modeling of aniline on Cr-bentonite, J. Hazard. Mater., 167 (2009) 141–147.
  33. X. Li, J. Wang, X. Zhang, C. Chen, Powdered activated carbon adsorption of two fishy odorants in water: trans,trans-2,4- heptadienal and trans,trans-2,4-decadienal, J. Environ. Sci.- China, 32 (2015) 15–25.
  34. N. Can, B.C. Mür, A. Altndal, Modeling of heavy metal ion adsorption isotherms onto metallophthalocyanine film, Sens. Actuators, B, 237 (2016) 953–961.
  35. C. Pradeep Sekhar, S. Kalidhasan, V. Rajesh, N. Rajesh, Biopolymer adsorbent for the removal of malachite green from aqueous solution, Chemosphere., 77 (2009) 842–847.
  36. Lutfullah, M. Rashid, U. Haseen, N. Rahman, An advanced Cr(III) selective nano-composite cation exchanger: synthesis, characterization and sorption characteristics, J. Ind. Eng. Chem., 20 (2014) 809–817.
  37. Z. Sun, B. Yan, A. Wang, N. Bai, Y. Li, Adsorption of reactive red X-3B on chitosan/CTAB modified bentonite, Acta Scien. Circum., 37 (2017) 617–623.
  38. D.V. Quang, P.B. Sarawade, S.J. Jeon, S.H. Kim, J. Kim, Y.G. Chai, H.T. Kim, Effective water disinfection using silver nanoparticle containing silica beads, Appl. Surf. Sci., 266 (2013) 280–287.
  39. P. Biswas, R. Bandyopadhyaya, Water disinfection using silver nanoparticle impregnated activated carbon: escherichia coli cell-killing in batch and continuous packed column operation over a long duration, Water Res., 100 (2016) 105–115.
  40. B. Ramalingam, M.M.R. Khan, B. Mondal, A.B. Mandal, S.K. Das, Facile synthesis of silver nanoparticles decorated magnetic-chitosan microsphere for efficient removal of dyes and microbial contaminants, ACS. Sustainable. Chem. Eng., 3 (2015) 2291–2302.