References

  1. V. Belessiotis, S. Kalogirou, E. Delyannis, Thermal Solar Desalination: Methods and Systems, Elsevier, 2016.
  2. G. Tiwari, L. Sahota, Review on the energy and economic efficiencies of passive and active solar distillation systems, Desalination,. 401 (2017) 151–179.
  3. K. Reddy, H. Sharon, Energy-environment-economic investigations on evacuated active multiple stage series on solar distillation unit for potable water production, Energy. Convers. Manage., 151 (2017) 259–285.
  4. R.K. Lal, S.V.P. Yadav, J. Dwivedi, H. Dwivedi, Comparative performance evaluation of an active/passive solar distillation system, Materials. Today., 4 Part A (2017) 2822–2831.
  5. H. Manchanda, M. Kumar, Performance analysis of single basin solar distillation cum drying unit with parabolic reflector, Desalination, 416 (2017) 1–9.
  6. H. Tanaka, Y. Nakatake, Effect of inclination of external at plate reflector of basin type still in winter, Solar Energy, 81 (2007) 1035–1042.
  7. P. Kalita, S. Borah, D. Das, Design and performance evaluation of a novel solar distillation unit, Desalination, 416 (2017) 65–75.
  8. S. Toure, P. Meukam, A numerical model and experimental investigation for a solar still in climatic conditions in Abidjan (Côte d’Ivoire), Renew. Energy., 11 (1997) 319–330.
  9. C. Esteban, J. Franco, A. Faulo, Construction and performance of an assisted solar still, Desalination, 173 (2005) 249–255.
  10. K. Ghachem, C. Maatki, L. Kolsi, N. Alshammari, H.F. Oztop, M.N. Borjini, K. Al-Salem, Numerical study of heat and mass transfer optimization in a 3D inclined solar distiller, Therm. Sci., 21 (2017) 2469–2480.
  11. A.O. Al-Sulttani, A. Ahsan, A. Rahman, N.N. Daud, S. Idrus, Heat transfer coefficients and yield analysis of a double-slope solar still hybrid with rubber scrapers: an experimental and theoretical study, Desalination, 407 (2017) 61–74.
  12. M.S.S. Abujazar, F. Suja, I.A. Ibrahim, A. Kabeel, S. Sharil, Productivity modelling of a developed inclined stepped solar still system based on actual performance and using a cascaded forward neural network model, J. Cleaner. Prod., 170 (2018) 147–159.
  13. Y.A.F. El-Samadony, W.M. El-Maghlany, A.E. Kabeel, Influence of glass cover inclination angle on radiation heat transfer rate within stepped solar still, Desalination, 384 (2016) 68–77.
  14. S. Kumar, G. Tiwari, Analytical expression for instantaneous exergy efficiency of a shallow basin passive solar still, Int. J. Therm. Sci., 50 (2011) 2543–2549.
  15. J. Torchia-Nunez, M. Porta-Gandara, J. Cervantes-de Gortari, Exergy analysis of a passive solar still, Renew. Energy., 33 (2008) 608–616.
  16. A.G. Ibrahim, A.M. Rashad, I. Dincer, Exergoeconomic analysis for cost optimization of a solar distillation system, Solar. Energy., 151 (2017) 22–32.
  17. P. Dumka, D.R. Mishra, Energy and exergy analysis of conventional and modified solar still integrated with sand bed earth: study of heat and mass transfer, Desalination, 437 (2018) 15–25.
  18. V.R. Khare, A.P. Singh, H. Kumar, R. Khatri, Modelling and performance enhancement of single slope solar still using CFD, Energy. Procedia., 109 (2017) 447–455.
  19. R. Alvarado-Juárez, J. Xamán, G. Álvarez, I. Hernández-López, Numerical study of heat and mass transfer in a solar still device: effect of the glass cover, Desalination, 359 (2015) 200–211.
  20. M.S. Maalem, A. Benzaoui, A. Bouhenna, Modeling of simultaneous transfers of heat and mass in a trapezoidal solar distiller, Desalination, 344 (2014) 371–382.
  21. M. Abderrezek, M. Fathi, Experimental study of the dust effect on photovoltaic panels’ energy yield, Solar. Energy., 142 (2017) 308–320.
  22. W. Punin, S. Maneewan, C. Punlek, Heat transfer characteristics of a thermoelectric power generator system for low-grade waste heat recovery from the sugar industry, Heat Mass Transfer, 2018, doi.org/10.1007/s00231-018-2481-5.
  23. A. Massaro, A. Galiano, G. Meuli, S.F. Massari, Overview and application of enabling technologies oriented on energy routing monitoring, on network installation and on predictive maintenance, Int. J. Artif. Intell. Applic., 9 (2018) 1–20.
  24. J. Tu, G.H. Yeoh, C. Liu, CFD Solution Procedure: A Beginning, Computational Fluid Dynamics: A Practical Approach, Butterworth-Heinemann, Elsevier, 2018, pp. 33–62.
  25. I.I. Marhoon, A.K. Rasheed, Mechanical and physical properties of glass wool-rigid polyurethane foam composites, Al-Nahrain J. Eng. Sci., 18 (2015) 41–49.
  26. C. Xie, Energy2D Interactive Heat Transfer Simulations for Everyone, 25 10 2018. [En línea]. Available at http://energy.concord.org/energy2d/.
  27. T.L. Bergman, F.P. Incropera, D.P. DeWitt, A.S. Lavine, Fundamentals of Heat and Mass Transfer, John Wiley & Sons, 2011.
  28. W.M. Haynes, CRC Handbook of Chemistry and Physics, CRC Press, 2014.
  29. Engineering ToolBox, 15 10 2018a [En línea]. Available at http://www.engineeringtoolbox.com/density-materials-d_1652.html.
  30. Engineering ToolBox, 15 10 2018b [En línea]. Available at http://www.engineeringtoolbox.com/specific-heat-capacity-d_391.html.
  31. Engineering ToolBox, 15 10 2018c [En línea]. Available at: http://www.engineeringtoolbox.com/thermal-conductivity-d_429.html.
  32. Y. Bazilevs, T.J. Hughes, Weak imposition of dirichlet boundary conditions in fluid mechanics, Computers. Fluids., 36 (2007) 12–26.
  33. S. Sharshir, A. Elsheikh, G. Peng, N. Yang, M. El-Samadony, A. Kabeel, Thermal performance and exergy analysis of solar stills a review, Renew. Sustain. Energy. Rev., 73 (2017) 521–544.