References
- V. Belessiotis, S. Kalogirou, E. Delyannis, Thermal Solar
Desalination: Methods and Systems, Elsevier, 2016.
- G. Tiwari, L. Sahota, Review on the energy and economic
efficiencies of passive and active solar distillation systems,
Desalination,. 401 (2017) 151–179.
- K. Reddy, H. Sharon, Energy-environment-economic
investigations on evacuated active multiple stage series on solar
distillation unit for potable water production, Energy. Convers.
Manage., 151 (2017) 259–285.
- R.K. Lal, S.V.P. Yadav, J. Dwivedi, H. Dwivedi, Comparative
performance evaluation of an active/passive solar distillation
system, Materials. Today., 4 Part A (2017) 2822–2831.
- H. Manchanda, M. Kumar, Performance analysis of single
basin solar distillation cum drying unit with parabolic reflector,
Desalination, 416 (2017) 1–9.
- H. Tanaka, Y. Nakatake, Effect of inclination of external at plate
reflector of basin type still in winter, Solar Energy, 81 (2007)
1035–1042.
- P. Kalita, S. Borah, D. Das, Design and performance evaluation
of a novel solar distillation unit, Desalination, 416 (2017) 65–75.
- S. Toure, P. Meukam, A numerical model and experimental
investigation for a solar still in climatic conditions in Abidjan
(Côte d’Ivoire), Renew. Energy., 11 (1997) 319–330.
- C. Esteban, J. Franco, A. Faulo, Construction and performance
of an assisted solar still, Desalination, 173 (2005) 249–255.
- K. Ghachem, C. Maatki, L. Kolsi, N. Alshammari, H.F. Oztop,
M.N. Borjini, K. Al-Salem, Numerical study of heat and mass
transfer optimization in a 3D inclined solar distiller, Therm. Sci.,
21 (2017) 2469–2480.
- A.O. Al-Sulttani, A. Ahsan, A. Rahman, N.N. Daud, S. Idrus,
Heat transfer coefficients and yield analysis of a double-slope
solar still hybrid with rubber scrapers: an experimental and
theoretical study, Desalination, 407 (2017) 61–74.
- M.S.S. Abujazar, F. Suja, I.A. Ibrahim, A. Kabeel, S. Sharil,
Productivity modelling of a developed inclined stepped solar still
system based on actual performance and using a cascaded forward
neural network model, J. Cleaner. Prod., 170 (2018) 147–159.
- Y.A.F. El-Samadony, W.M. El-Maghlany, A.E. Kabeel,
Influence of glass cover inclination angle on radiation heat
transfer rate within stepped solar still, Desalination, 384
(2016) 68–77.
- S. Kumar, G. Tiwari, Analytical expression for instantaneous
exergy efficiency of a shallow basin passive solar still, Int. J.
Therm. Sci., 50 (2011) 2543–2549.
- J. Torchia-Nunez, M. Porta-Gandara, J. Cervantes-de Gortari,
Exergy analysis of a passive solar still, Renew. Energy., 33 (2008)
608–616.
- A.G. Ibrahim, A.M. Rashad, I. Dincer, Exergoeconomic analysis
for cost optimization of a solar distillation system, Solar.
Energy., 151 (2017) 22–32.
- P. Dumka, D.R. Mishra, Energy and exergy analysis of
conventional and modified solar still integrated with sand bed
earth: study of heat and mass transfer, Desalination, 437 (2018)
15–25.
- V.R. Khare, A.P. Singh, H. Kumar, R. Khatri, Modelling and
performance enhancement of single slope solar still using CFD,
Energy. Procedia., 109 (2017) 447–455.
- R. Alvarado-Juárez, J. Xamán, G. Álvarez, I. Hernández-López,
Numerical study of heat and mass transfer in a solar still device:
effect of the glass cover, Desalination, 359 (2015) 200–211.
- M.S. Maalem, A. Benzaoui, A. Bouhenna, Modeling of
simultaneous transfers of heat and mass in a trapezoidal solar
distiller, Desalination, 344 (2014) 371–382.
- M. Abderrezek, M. Fathi, Experimental study of the dust effect
on photovoltaic panels’ energy yield, Solar. Energy., 142 (2017)
308–320.
- W. Punin, S. Maneewan, C. Punlek, Heat transfer characteristics
of a thermoelectric power generator system for low-grade
waste heat recovery from the sugar industry, Heat Mass
Transfer, 2018, doi.org/10.1007/s00231-018-2481-5.
- A. Massaro, A. Galiano, G. Meuli, S.F. Massari, Overview
and application of enabling technologies oriented on energy
routing monitoring, on network installation and on predictive
maintenance, Int. J. Artif. Intell. Applic., 9 (2018) 1–20.
- J. Tu, G.H. Yeoh, C. Liu, CFD Solution Procedure: A Beginning,
Computational Fluid Dynamics: A Practical Approach,
Butterworth-Heinemann, Elsevier, 2018, pp. 33–62.
- I.I. Marhoon, A.K. Rasheed, Mechanical and physical properties
of glass wool-rigid polyurethane foam composites, Al-Nahrain
J. Eng. Sci., 18 (2015) 41–49.
- C. Xie, Energy2D Interactive Heat Transfer Simulations for
Everyone, 25 10 2018. [En línea]. Available at http://energy.concord.org/energy2d/.
- T.L. Bergman, F.P. Incropera, D.P. DeWitt, A.S. Lavine,
Fundamentals of Heat and Mass Transfer, John Wiley & Sons,
2011.
- W.M. Haynes, CRC Handbook of Chemistry and Physics, CRC
Press, 2014.
- Engineering ToolBox, 15 10 2018a [En línea]. Available at http://www.engineeringtoolbox.com/density-materials-d_1652.html.
- Engineering ToolBox, 15 10 2018b [En línea]. Available at http://www.engineeringtoolbox.com/specific-heat-capacity-d_391.html.
- Engineering ToolBox, 15 10 2018c [En línea]. Available at: http://www.engineeringtoolbox.com/thermal-conductivity-d_429.html.
- Y. Bazilevs, T.J. Hughes, Weak imposition of dirichlet boundary
conditions in fluid mechanics, Computers. Fluids., 36 (2007)
12–26.
- S. Sharshir, A. Elsheikh, G. Peng, N. Yang, M. El-Samadony, A.
Kabeel, Thermal performance and exergy analysis of solar stills
a review, Renew. Sustain. Energy. Rev., 73 (2017) 521–544.