References

  1. K. Widziewicz, W. Rogula-Kozłowska, K. Loska, Cancer risk from arsenic and chromium species bound to PM 2.5 and PM 1 – Polish case study, Atmos. Pollut. Res., 7 (2016) 884–894.
  2. L. Chen, J. Zhang, Y. Zhu, Y. Zhang, Interaction of chromium(III) or chromium(VI) with catalase and its effect on the structure and function of catalase: an in vitro study, Food. Chem., 244 (2018) 378–385.
  3. K.S. Low, C.K.Lee, A.Y. Ng, Column study on the sorption of Cr(VI) using quaternized rice hulls, Bioresour. Technol., 68 (1999) 205–208.
  4. Integrated wastewater discharge standard, Marine. Sci. Bull., 3 (1992) 70–72.
  5. Z.Q. Ling, G.S. Lin, W. Fei, Current situation and prospect on the processing craft for Cr(VI)- containing wastewater treatments, Energy. Res. Manage., 2 (2010) 29–33.
  6. A. De Martino, M. Iorio, R. Capasso, Sustainable sorption strategies for removing Cr3+ from tannery process wastewater, Chemosphere, 92 (2013) 1436–1441.
  7. T.M. Zewail, N.S. Yousef, Chromium ions (Cr6+ and Cr3+) removal from synthetic wastewater by electrocoagulation using vertical expanded Fe anode, J. Electroanal. Chem., 735 (2014) 123–128.
  8. R.B. Grieves, Foam separations: a review, Chem. Eng. J., 9 (1975) 93–106.
  9. P.J. Martin, H.M. Dutton, J.B. Winterburn, S. Baker, A.B. Russell, Foam fractionation with reflux, Chem. Eng. Sci., 12 (2010) 825–835.
  10. Z. Chang, H. Liu, J. Chen, The application and development of foam separation, Chem. Ind. Eng. Progr., 5 (1999) 18.
  11. D.J. Wang, Y. Zhang, M.Z. Qin, Treatment of Cr(III)-containing wastewater by continuous foam separation, Adv. Mater. Res., 355–356 (2011) 1535–1538.
  12. K. Matsuoka, H. Miura, S. Karima, C. Taketaka, S. Ouno, Y. Moroi, Removal of alkali metal ions from aqueous solution by foam separation method, J. Mol. Liq., 263 (2018) 89–95.
  13. Y. Wang, Z.L. Wu, K. Lu, Y.J. Sun, Study on technology of simultaneous removal of copper ion and crystal violet in aqueous solution by foam separation, Sep. Sci. Technol., 46 (2011) 1200–1204.
  14. C.L. Burnett, W.F. Bergfeld, D.V. Belsito, Final Report of the Cosmetic Ingredient Review Expert Panel on the Safety Assessment of Cocamidopropyl betaine (CAPB), Int. J. Toxicol., 31 (2012) 77–111.
  15. L. Parsons, Cocamidopropyl betaine, Dermatitis Contact Atopic Occupational Drug, 19 (2018) E49.
  16. S Debnath, U.C. Ghosh, Kinetics, isotherm and thermodynamics for Cr(III) and Cr(VI) adsorption from aqueous solutions by crystalline hydrous titanium oxide, J. Chem. Thermodyn., 40 (2018) 67–77.
  17. E.H. Lucassen-Reynders, Anionic surfactants: physical chemistry of surfactant action, New York and Bxsel, 1981.
  18. Q.W. Yang, Z.L. Wu, Y.L. Zhao, Y. Wang, R. Li, Enhancing foam drainage using foam fractionation column with spiral internal for separation of sodium dodecyl sulfate, J. Hazard. Mater., 192 (2011) 1900–1904.
  19. A. Domínguez, A. Fernández, N. González, E. Iglesias, L. Montenegro, Determination of critical micelle concentration of some surfactants by three techniques, Chemical. Education, 74 (1997) 1227–1231.
  20. Critical micelle concentration (CMC) [Internet]. Available at: https://www.kruss-scientific.com/services/education-theory/glossary/cmc/.
  21. J.C. Harris, Detergent application of the measurement of critical micelle concentration, J. Am. Oil. Chem. Soc., 35 (1958) 670–674.
  22. M.D. Eisner, SAK. Jeelani, L Bernhard, EJ Windhab, Stability of foams containing proteins, fat particles and nonionic surfactants, Chem. Eng. Sci., 62 (2007) 1974–1987.
  23. L. Liu, Study on the properties and application of nonionic surfactant in aqueous two-phase system, Shantou University, 2015.