References

  1. H. Ma, J.J. Chen, L. Tan, J.H. Bu, Y. Zhu, B. Tan, C. Zhang, Nitrogen-rich triptycene-based porous polymer for gas storage and iodine enrichment, ACS. Macro. Lett., 5 (2016) 1039−1043.
  2. K. Kosaka, M. Asami, N. Kobashigawa, K. Ohkubo, H. Terada, N. Kishida, M. Akiba, Removal of radioactive iodine and cesium in water purification processes after an explosion at a nuclear power plant due to the Great East Japan earthquake, Water. Res., 46 (2012) 4397−4404.
  3. X. Qian, Z.Q. Zhu, H.X. Sun, F. Ren, P. Mu, W.D. Liang, L.H. Chen, A. Li, Capture and reversible storage of volatile iodine by novel conjugated microporous polymers containing thiophene units, ACS. Appl. Mater. Interfaces, 8 (2016) 21063−21069.
  4. L. Lin, H. Guan, D. Zou, Z. Dong, Z. Liu, F. Xu, Z. Xie, Y. Li, A pharmaceutical hydrogen-bonded covalent organic polymer for enrichment of volatile iodine, RSC. Adv., 7 (2017) 54407−54415.
  5. X.Y. Zhang, P. Gu, X.Y. Li, G.H. Zhang, Efficient adsorption of radioactive iodide ion from simulated wastewater by nano Cu2O/Cu modified activated carbon, Chem. Eng. J., 322 (2017) 129−139.
  6. C.P.J. Isaac, A. Sivakumar, Removal of lead and cadmium ions from water using Annona squamosa shell: kinetic and equilibrium studies, Desal. Wat. Treat., 51 (2013) 7700–7709.
  7. H. Li, X.S. Ding, B.H. Han, Porous azo-bridged porphyrinphthalocyanine network with high iodine capture capability, Chem. Eur. J., 22 (2016) 11863–11868.
  8. I. Ali, New generation adsorbents for water treatment, Chem. Rev., 112 (2012) 5073–5091.
  9. A. Sigen, Y. Zhang, Z. Li, H. Xia, M. Xue, X. Liu, Y. Mu, Highly efficient and reversible iodine capture using a metalloporphyrinbased conjugated microporous polymer, Chem. Commun., 50 (2014) 8495–8498.
  10. A. Schneemann, V. Bon, I. Schwedler, I. Senkovska, S. Kaskel, R.A. Fischer, Flexible metal-organic frameworks, Chem. Soc. Rev., 43 (2014) 6062–6096.
  11. A. Schaate, P. Roy, A. Godt, J. Lippke, F. Waltz, M. Wiebcke, P. Behrens, Modulated synthesis of Zr-based metal-organic frameworks: from nano to single crystals, Chem. Eur. J., 17 (2011) 6643–6651.
  12. X. Zhou. Y. Zhu. L. Li. T. Yang. J. Wang, W. Huang, Lanthanideorganic frameworks based on terphenyl-tetracarboxylate ligands: syntheses, structures, optical properties and selective sensing of nitro explosives, Sci. China. Chem., 60 (2017) 1130–1135.
  13. J.R. Long, O.M. Yaghi, The pervasive chemistry of metal-organic frameworks, Chem. Soc. Rev., 38 (2009) 1213–1214.
  14. E. Hadinejad, S. Hashemian, S.A. Yasini, Comparison of catalytic effect of Fe-MOF and Fe-ZIF for Fenton degradation of Eriochrom black T, Desal. Wat. Treat., 90 (2017) 180–188.
  15. A. Behvandi, F. Khorasheh, A.A. Safekordi, Adsorption of terephthalic acid and p-toluic acid from aqueous solution using metal organic frameworks: effect of molecular properties of the adsorbates and structural characteristics of the adsorbents, Desal. Wat. Treat., 66 (2017) 367–382.
  16. K.Y. Jee, J.S. Kim, J. Kim, Y.T. Lee, Effect of hydrophilic Cu3(BTC)2 additives on the performance of PVDF membranes for water flux improvement, Desal. Wat. Treat., 57 (2016) 17637–17645.
  17. L. Li, L.J. Yuan, W. Hong, L. Fan, L.B. Mao, L. Liu, Hybrid Fe3O4/MOFs for the adsorption of methylene blue and methyl violet from aqueous solution, Desal. Wat. Treat., 55 (2015) 1973–1980.
  18. K. Xie, C.H. Shan, J.S. Qi, S. Qiao, Q.S. Zeng, L.Y. Zhang, Study of adsorptive removal of phenol by MOF-5, Desal. Wat. Treat., 54 (2015) 654–659.
  19. Z. Hasan, S.H. Jhung, Removal of hazardous organics from water using metal-organic frameworks (MOFs): plausible mechanisms for selective adsorptions, J. Hazard. Mater., 283 (2015) 329–339.
  20. B. Liu, H. Li, X. Xu, X. Li, N. Lv, V. Singh, J.F. Stoddart, P. York, X. Xu, R. Gref, J. Zhang, Optimized synthesis and crystalline stability of γ-cyclodextrin metal-organic frameworks for drug adsorption, Int. J. Pharm., 514 (2016) 212–219.
  21. Z. Moussa. M. Hmadeh. M.G. Abiad. O.H. Dib, D. Patra, Encapsulation of curcumin in cyclodextrin-metal organic frameworks: dissociation of loaded CD-MOFs enhances stability of curcumin, Food. Chem., 212 (2016) 485–494.
  22. X. Xu, C. Wang, H. Li, L. Xue, B. Liu, V. Singh, S. Wang, L. Sun, R. Gref, J. Zhang, Evaluation of drug loading capabilities of γ-cyclodextrin-metal organic frameworks by high performance liquid chromatography, J. Chromatogr. A, 1488 (2017) 37–44.
  23. X. Li, T. Guo, L. Lachmanski, F. Manoli, M. Menendezmiranda, I. Manet, Z. Guo, L. Wu, J. Zhang, R. Gref, Cyclodextrin-based metal-organic frameworks particles as efficient carriers for lansoprazole: study of morphology and chemical composition of individual particles, Int. J. Pharm., 531 (2017) 424–432.
  24. R.A. Smaldone, R.S. Forgan, H. Furukawa, J.J. Gassensmith, A.M.Z. Slawin, O.M. Yaghi, J.F. Stoddart, Metal-organic frameworks from edible natural products, Angew. Chem. Int. Ed. Engl., 49 (2010) 8630–8634.
  25. Y. Furukawa, T. Ishiwata, K. Sugikawa, K. Kokado, K. Sada, Nano- and microsized cubic gel particles from cyclodextrin metal-organic frameworks, Angew. Chem. Int. Ed. Engl., 51 (2012) 10566–10569.
  26. J.M. Duan, B. Su, Removal characteristics of Cd(II) from acidic aqueous solution by modified steel-making slag, Chem. Eng. J., 246 (2014) 160–167.
  27. Y. Liao, J. Weber, B.M. Mills, Z. Ren, C.F.J. Faul, Highly efficient and reversible iodine capture in hexaphenylbenzene-based conjugated microporous polymers, Macromolecules, 49 (2016) 6322–6333.
  28. T. Hasell, M. Schmidtmann, A.I. Cooper, Molecular doping of porous organic cages, J. Am. Chem. Soc., 133 (2011) 14920–14923.
  29. J. Dong, F.F. Xu, Z.J. Dong, Y.S. Zhao, Y. Yan, H. Jin, Y.X. Li, Fabrication of two dual-functionalized covalent organic polymers through heterostructural mixed linkers and their use as cationic dye adsorbents, RSC. Adv., 8 (2018) 19075–19084.
  30. Y.S. Ho, G. McKay, Pseudo-second order model for sorption processes, Process. Biochem., 34 (1999) 451–465.
  31. S.X. Duan, R.F. Tang, Z.C. Xue, X.X. Zhang, Y.Y. Zhao, W. Zhang, J.H. Zhang, B.Q. Wang, S.Y. Zeng, D.Z. Sun, Effective removal of Pb(II) using magnetic Co0.6Fe2.4O4 micro-particles as the adsorbent: synthesis and study on the kinetic and thermodynamic behaviors for its adsorption, Colloids. Surf. A., 469 (2015) 211–223.
  32. D. Balarak, F. Mostafapour, E. Bazrafshan, T.A. Saleh, Studies on the adsorption of amoxicillin on multi-wall carbon nanotubes, Water. Sci. Technol., 75 (2017) 1599–1606.
  33. D. Balarak, H. Azarpira, F.K. Mostafapour, Study of the adsorption mechanisms of cephalexin on to azolla filiculoides, Der. Pharma. Chemica., 8 (2016) 114–121.
  34. Y. Li, Q. Du, T. Liu, J. Sun, Y. Jiao, Y. Xia, L. Xia, Z. Wang, W. Zhang, K. Wang, Equilibrium, kinetic and thermodynamic studies on the adsorption of phenol onto graphene, Mater. Res. Bull., 47 (2012) 1898–1904.
  35. I. Langmuir, The adsorption of gases on plane surfaces of glass, mica and platinum, J. Am. Chem. Soc., 40 (1918) 1361–1403.
  36. H. Freundlich, W. Heller, The adsorption of cis- and transazobenzene, J. Am. Chem. Soc., 61 (1939) 2228–2230.
  37. S. Ahmadi, A. Banach, F.K. Mostafapour, D. Balarak, Study survey of cupric oxide nanoparticles in removal efficiency of ciprofloxacin antibiotic from aqueous solution: adsorption isotherm study, Desal. Wat. Treat., 89 (2017) 297–303.
  38. D. Balarak, F.K. Mostafapour, H. Azarpira, Adsorption isotherm studies of tetracycline antibiotics from aqueous solutions by maize stalks as a cheap biosorbent, Int. J. Pharm. Tech., 8 (2016) 16664–16675.
  39. D.D. Lu, Q.L. Cao, X.J. Cao, F. Luo, Removal of Pb(II) using the modified lawny grass: mechanism, kinetics, equilibrium and thermodynamic studies, J. Hazard. Mater., 166 (2009) 239–247.
  40. Y.J. Yao, S.D. Miao, S.M. Yu, L.P. Ma, H.Q. Sun, S.B. Wang, Fabrication of Fe3O4/SiO2 core/shell nanoparticles attached to graphene oxide and its use as an adsorbent, J. Colloid. Interface. Sci., 379 (2012) 20–26.
  41. M. Kara, H. Yuzer, E. Sabah, M.S. Celik, Adsorption of cobalt from aqueous solutions onto sepiolite, Water. Res., 37 (2003) 224–232.
  42. Q.X. Yang, Q.Q. Zhao, S.S. Ren, Z.J. Chen, H.G. Zheng, Assembly of Zr-MOF crystals onto magnetic beads as a highly adsorbent for recycling nitrophenol, Chem. Eng. J., 323 (2017) 74–83.
  43. B.J. Riley, J. Chun, J.V. Ryan, J. Matyáš, X.S. Li, D.W. Matson, S.K. Sundaram, D.M. Strachan, J.D. Vienna, Chalcogen-based aerogels as a multifunctional platform for remediation of radioactive iodine, RSC. Adv., 1 (2011) 1704–1715.
  44. B.F. Abrahams, M. Moylan, S.D. Orchard, R. Robson, Zinc saccharate: a robust, 3D coordination cetwork with two types of isolated, parallel channels, one hydrophilic and the other hydrophobic, Angew. Chem. Int. Ed. Engl., 42 (2003) 1848–1851.
  45. A.P. Katsoulidis, J.Q. He, M.G. Kanatzidis, Functional monolithic polymeric organic framework aerogel as reducing and hosting media for Ag nanoparticles and application in capturing of Iodine Vapors, Chem. Mater., 24 (2012) 1937–1943.
  46. K.W. Chapman, P.J. Chupas, T.M. Nenoff, Radioactive iodine capture in silver-containing mordenites through nanoscale silver iodide formation, J. Am. Chem. Soc., 132 (2010) 8897–8899.
  47. Q.K. Liu, J.P. Ma, Y.B. Dong, Highly efficient iodine species enriching and guest-driven tunable luminescent properties based on a cadmium(II)-triazole MOF, Chem. Commun. (Camb)., 47 (2011) 7185–7187.
  48. Y.F. Chen, H.X. Sun, R.X. Yang, T.T. Wang, C.J. Pei, Z.T. Xiang, Z.Q. Zhu, W.D. Liang, A. Li, W.Q. Deng, Synthesis of conjugated microporous polymer nanotubes with large surface areas as absorbents for iodine and CO2 uptake, J. Mater. Chem. A, 3 (2015) 87–91.
  49. D.F. Sava, T.J. Garino, T.M. Nenoff, Iodine confinement into metal-organic frameworks (MOFs): low-temperature sintering glasses to form novel glass composite material (GCM) alternative waste forms, Ind. Eng. Chem. Res., 51 (2012) 614–620.
  50. K.C. Park, J. Cho, C.Y. Lee, Porphyrin and pyrene-based conjugated microporous polymer for efficient sequestration of CO2 and iodine and photosensitization for singlet oxygen generation, RSC. Adv., 6 (2016) 75478–75481.
  51. C. Pei, T. Ben, S. Xu, S.J. Qiu, Ultrahigh iodine adsorption in porous organic frameworks, Mater. Chem. A, 2 (2014) 7179–7187.
  52. Y. Li, W.B. Chen, W.J. Hao, Y.S. Li, L. Chen, Covalent organic frameworks constructed from flexible building blocks with high adsorption capacity for pollutants, ACS. Appl. Nano. Mater., 1 (2018) 4756–4761.