References
- H. Ma, J.J. Chen, L. Tan, J.H. Bu, Y. Zhu, B. Tan, C. Zhang,
Nitrogen-rich triptycene-based porous polymer for gas storage
and iodine enrichment, ACS. Macro. Lett., 5 (2016) 1039−1043.
- K. Kosaka, M. Asami, N. Kobashigawa, K. Ohkubo, H. Terada,
N. Kishida, M. Akiba, Removal of radioactive iodine and
cesium in water purification processes after an explosion at a
nuclear power plant due to the Great East Japan earthquake,
Water. Res., 46 (2012) 4397−4404.
- X. Qian, Z.Q. Zhu, H.X. Sun, F. Ren, P. Mu, W.D. Liang, L.H. Chen,
A. Li, Capture and reversible storage of volatile iodine by novel
conjugated microporous polymers containing thiophene units,
ACS. Appl. Mater. Interfaces, 8 (2016) 21063−21069.
- L. Lin, H. Guan, D. Zou, Z. Dong, Z. Liu, F. Xu, Z. Xie, Y. Li, A
pharmaceutical hydrogen-bonded covalent organic polymer for
enrichment of volatile iodine, RSC. Adv., 7 (2017) 54407−54415.
- X.Y. Zhang, P. Gu, X.Y. Li, G.H. Zhang, Efficient adsorption
of radioactive iodide ion from simulated wastewater by
nano Cu2O/Cu modified activated carbon, Chem. Eng. J.,
322 (2017) 129−139.
- C.P.J. Isaac, A. Sivakumar, Removal of lead and cadmium
ions from water using Annona squamosa shell: kinetic and
equilibrium studies, Desal. Wat. Treat., 51 (2013) 7700–7709.
- H. Li, X.S. Ding, B.H. Han, Porous azo-bridged porphyrinphthalocyanine
network with high iodine capture capability,
Chem. Eur. J., 22 (2016) 11863–11868.
- I. Ali, New generation adsorbents for water treatment, Chem.
Rev., 112 (2012) 5073–5091.
- A. Sigen, Y. Zhang, Z. Li, H. Xia, M. Xue, X. Liu, Y. Mu, Highly
efficient and reversible iodine capture using a metalloporphyrinbased
conjugated microporous polymer, Chem. Commun., 50
(2014) 8495–8498.
- A. Schneemann, V. Bon, I. Schwedler, I. Senkovska, S. Kaskel,
R.A. Fischer, Flexible metal-organic frameworks, Chem. Soc.
Rev., 43 (2014) 6062–6096.
- A. Schaate, P. Roy, A. Godt, J. Lippke, F. Waltz, M. Wiebcke,
P. Behrens, Modulated synthesis of Zr-based metal-organic
frameworks: from nano to single crystals, Chem. Eur. J.,
17 (2011) 6643–6651.
- X. Zhou. Y. Zhu. L. Li. T. Yang. J. Wang, W. Huang, Lanthanideorganic
frameworks based on terphenyl-tetracarboxylate
ligands: syntheses, structures, optical properties and
selective sensing of nitro explosives, Sci. China. Chem.,
60 (2017) 1130–1135.
- J.R. Long, O.M. Yaghi, The pervasive chemistry of metal-organic
frameworks, Chem. Soc. Rev., 38 (2009) 1213–1214.
- E. Hadinejad, S. Hashemian, S.A. Yasini, Comparison of
catalytic effect of Fe-MOF and Fe-ZIF for Fenton degradation
of Eriochrom black T, Desal. Wat. Treat., 90 (2017) 180–188.
- A. Behvandi, F. Khorasheh, A.A. Safekordi,
Adsorption of terephthalic acid and p-toluic acid from aqueous
solution using metal organic frameworks: effect of molecular
properties of the adsorbates and structural characteristics of the
adsorbents, Desal. Wat. Treat., 66 (2017) 367–382.
- K.Y. Jee, J.S. Kim, J. Kim, Y.T. Lee, Effect of hydrophilic Cu3(BTC)2
additives on the performance of PVDF membranes for water
flux improvement, Desal. Wat. Treat., 57 (2016) 17637–17645.
- L. Li, L.J. Yuan, W. Hong, L. Fan, L.B. Mao, L. Liu, Hybrid
Fe3O4/MOFs for the adsorption of methylene blue and methyl
violet from aqueous solution, Desal. Wat. Treat., 55 (2015)
1973–1980.
- K. Xie, C.H. Shan, J.S. Qi, S. Qiao, Q.S. Zeng, L.Y. Zhang, Study
of adsorptive removal of phenol by MOF-5, Desal. Wat. Treat.,
54 (2015) 654–659.
- Z. Hasan, S.H. Jhung, Removal of hazardous organics from
water using metal-organic frameworks (MOFs): plausible
mechanisms for selective adsorptions, J. Hazard. Mater.,
283 (2015) 329–339.
- B. Liu, H. Li, X. Xu, X. Li, N. Lv, V. Singh, J.F. Stoddart, P. York,
X. Xu, R. Gref, J. Zhang, Optimized synthesis and crystalline
stability of γ-cyclodextrin metal-organic frameworks for drug
adsorption, Int. J. Pharm., 514 (2016) 212–219.
- Z. Moussa. M. Hmadeh. M.G. Abiad. O.H. Dib, D. Patra,
Encapsulation of curcumin in cyclodextrin-metal organic
frameworks: dissociation of loaded CD-MOFs enhances
stability of curcumin, Food. Chem., 212 (2016) 485–494.
- X. Xu, C. Wang, H. Li, L. Xue, B. Liu, V. Singh, S. Wang, L. Sun,
R. Gref, J. Zhang, Evaluation of drug loading capabilities of
γ-cyclodextrin-metal organic frameworks by high performance
liquid chromatography, J. Chromatogr. A, 1488 (2017) 37–44.
- X. Li, T. Guo, L. Lachmanski, F. Manoli, M. Menendezmiranda,
I. Manet, Z. Guo, L. Wu, J. Zhang, R. Gref, Cyclodextrin-based
metal-organic frameworks particles as efficient carriers for
lansoprazole: study of morphology and chemical composition
of individual particles, Int. J. Pharm., 531 (2017) 424–432.
- R.A. Smaldone, R.S. Forgan, H. Furukawa, J.J. Gassensmith,
A.M.Z. Slawin, O.M. Yaghi, J.F. Stoddart, Metal-organic
frameworks from edible natural products, Angew. Chem. Int.
Ed. Engl., 49 (2010) 8630–8634.
- Y. Furukawa, T. Ishiwata, K. Sugikawa, K. Kokado, K. Sada,
Nano- and microsized cubic gel particles from cyclodextrin
metal-organic frameworks, Angew. Chem. Int. Ed. Engl., 51
(2012) 10566–10569.
- J.M. Duan, B. Su, Removal characteristics of Cd(II) from acidic
aqueous solution by modified steel-making slag, Chem. Eng. J.,
246 (2014) 160–167.
- Y. Liao, J. Weber, B.M. Mills, Z. Ren, C.F.J. Faul, Highly efficient
and reversible iodine capture in hexaphenylbenzene-based
conjugated microporous polymers, Macromolecules, 49 (2016)
6322–6333.
- T. Hasell, M. Schmidtmann, A.I. Cooper, Molecular doping of
porous organic cages, J. Am. Chem. Soc., 133 (2011) 14920–14923.
- J. Dong, F.F. Xu, Z.J. Dong, Y.S. Zhao, Y. Yan, H. Jin, Y.X. Li,
Fabrication of two dual-functionalized covalent organic
polymers through heterostructural mixed linkers and their use
as cationic dye adsorbents, RSC. Adv., 8 (2018) 19075–19084.
- Y.S. Ho, G. McKay, Pseudo-second order model for sorption
processes, Process. Biochem., 34 (1999) 451–465.
- S.X. Duan, R.F. Tang, Z.C. Xue, X.X. Zhang, Y.Y. Zhao,
W. Zhang, J.H. Zhang, B.Q. Wang, S.Y. Zeng, D.Z. Sun, Effective
removal of Pb(II) using magnetic Co0.6Fe2.4O4 micro-particles
as the adsorbent: synthesis and study on the kinetic and
thermodynamic behaviors for its adsorption, Colloids. Surf. A.,
469 (2015) 211–223.
- D. Balarak, F. Mostafapour, E. Bazrafshan, T.A. Saleh, Studies on
the adsorption of amoxicillin on multi-wall carbon nanotubes,
Water. Sci. Technol., 75 (2017) 1599–1606.
- D. Balarak, H. Azarpira, F.K. Mostafapour, Study of the
adsorption mechanisms of cephalexin on to azolla filiculoides,
Der. Pharma. Chemica., 8 (2016) 114–121.
- Y. Li, Q. Du, T. Liu, J. Sun, Y. Jiao, Y. Xia, L. Xia, Z. Wang, W. Zhang,
K. Wang, Equilibrium, kinetic and thermodynamic studies on
the adsorption of phenol onto graphene, Mater. Res. Bull., 47
(2012) 1898–1904.
- I. Langmuir, The adsorption of gases on plane surfaces of glass,
mica and platinum, J. Am. Chem. Soc., 40 (1918) 1361–1403.
- H. Freundlich, W. Heller, The adsorption of cis- and transazobenzene,
J. Am. Chem. Soc., 61 (1939) 2228–2230.
- S. Ahmadi, A. Banach, F.K. Mostafapour, D. Balarak, Study
survey of cupric oxide nanoparticles in removal efficiency of
ciprofloxacin antibiotic from aqueous solution: adsorption
isotherm study, Desal. Wat. Treat., 89 (2017) 297–303.
- D. Balarak, F.K. Mostafapour, H. Azarpira, Adsorption isotherm
studies of tetracycline antibiotics from aqueous solutions by
maize stalks as a cheap biosorbent, Int. J. Pharm. Tech., 8 (2016)
16664–16675.
- D.D. Lu, Q.L. Cao, X.J. Cao, F. Luo, Removal of Pb(II) using the
modified lawny grass: mechanism, kinetics, equilibrium and
thermodynamic studies, J. Hazard. Mater., 166 (2009) 239–247.
- Y.J. Yao, S.D. Miao, S.M. Yu, L.P. Ma, H.Q. Sun, S.B. Wang,
Fabrication of Fe3O4/SiO2 core/shell nanoparticles attached to
graphene oxide and its use as an adsorbent, J. Colloid. Interface.
Sci., 379 (2012) 20–26.
- M. Kara, H. Yuzer, E. Sabah, M.S. Celik, Adsorption of
cobalt from aqueous solutions onto sepiolite, Water. Res.,
37 (2003) 224–232.
- Q.X. Yang, Q.Q. Zhao, S.S. Ren, Z.J. Chen, H.G. Zheng, Assembly
of Zr-MOF crystals onto magnetic beads as a highly adsorbent
for recycling nitrophenol, Chem. Eng. J., 323 (2017) 74–83.
- B.J. Riley, J. Chun, J.V. Ryan, J. Matyáš, X.S. Li, D.W. Matson,
S.K. Sundaram, D.M. Strachan, J.D. Vienna, Chalcogen-based
aerogels as a multifunctional platform for remediation of
radioactive iodine, RSC. Adv., 1 (2011) 1704–1715.
- B.F. Abrahams, M. Moylan, S.D. Orchard, R. Robson, Zinc
saccharate: a robust, 3D coordination cetwork with two types
of isolated, parallel channels, one hydrophilic and the other
hydrophobic, Angew. Chem. Int. Ed. Engl., 42 (2003) 1848–1851.
- A.P. Katsoulidis, J.Q. He, M.G. Kanatzidis, Functional
monolithic polymeric organic framework aerogel as reducing
and hosting media for Ag nanoparticles and application in
capturing of Iodine Vapors, Chem. Mater., 24 (2012) 1937–1943.
- K.W. Chapman, P.J. Chupas, T.M. Nenoff, Radioactive iodine
capture in silver-containing mordenites through nanoscale
silver iodide formation, J. Am. Chem. Soc., 132 (2010) 8897–8899.
- Q.K. Liu, J.P. Ma, Y.B. Dong, Highly efficient iodine species
enriching and guest-driven tunable luminescent properties
based on a cadmium(II)-triazole MOF, Chem. Commun.
(Camb)., 47 (2011) 7185–7187.
- Y.F. Chen, H.X. Sun, R.X. Yang, T.T. Wang, C.J. Pei, Z.T. Xiang,
Z.Q. Zhu, W.D. Liang, A. Li, W.Q. Deng, Synthesis of conjugated
microporous polymer nanotubes with large surface areas
as absorbents for iodine and CO2 uptake, J. Mater. Chem. A,
3 (2015) 87–91.
- D.F. Sava, T.J. Garino, T.M. Nenoff, Iodine confinement into
metal-organic frameworks (MOFs): low-temperature sintering
glasses to form novel glass composite material (GCM) alternative
waste forms, Ind. Eng. Chem. Res., 51 (2012) 614–620.
- K.C. Park, J. Cho, C.Y. Lee, Porphyrin and pyrene-based
conjugated microporous polymer for efficient sequestration
of CO2 and iodine and photosensitization for singlet oxygen
generation, RSC. Adv., 6 (2016) 75478–75481.
- C. Pei, T. Ben, S. Xu, S.J. Qiu, Ultrahigh iodine adsorption
in porous organic frameworks, Mater. Chem. A, 2 (2014)
7179–7187.
- Y. Li, W.B. Chen, W.J. Hao, Y.S. Li, L. Chen, Covalent organic
frameworks constructed from flexible building blocks with high
adsorption capacity for pollutants, ACS. Appl. Nano. Mater.,
1 (2018) 4756–4761.