References

  1. S. Kugathas, J.P Sumpter, Synthetic glucocorticoids in the environment: first results on their potential impacts on fish, Environ. Sci. Technol., 45 (2011) 2377–2383.
  2. H. Chang, J. Hu, B. Shao, Occurrence of natural and synthetic glucocorticoids in sewage treatment plants and receiving river waters, Environ. Sci. Technol., 41 (2007) 3462–3468.
  3. A. Jia, S.M. Wu, K.D. Daniels, S.A Snyder, Balancing the budget: accounting for glucocorticoid bioactivity and fate during water treatment, Environ. Sci. Technol., 50 (2016) 2870–2880.
  4. BNF 2006, British National Formulary (BNF52), British Medical Association and Royal Pharmaceutical Society of Great Britain, September 2006, pp. 916.
  5. Z. Fan, S. Wu, H. Chang, J. Hu, Behaviors of glucocorticoids, androgens and progestogens in a municipal sewage treatment plant: comparison to estrogens, Environ. Sci. Technol., 45 (2011) 2725–2733.
  6. J. Brausch, K. Connors, B. Brooks, G. Rand, In: D.M. Whitacre, Human pharmaceuticals in the aquatic environment: a review of recent toxicological studies and considerations for toxicity testing, Rev. Environ. Contam. Toxicol., 218 (2012) 1–99.
  7. C.A. Lalone, D.L. Villeneuve, A.W. Olmstead, E.K. Medlock, M.D. Kahl, K.M. Jensen, E.J. Durhan, E.A. Makynen, C.A. Blanksma, J.E. Cavallin, L.M. Thomas, S.M. Seidl, S.Y. Skolness, L.C. Wehmas, R.D. Johnson, G.T. Ankley, Effects of a glucocorticoid receptor agonist, dexamethasone, on fathead minnow reproduction, growth, and development, Environ. Toxicol. Chem., 31 (2012) 611–622.
  8. M. Schriks, J.A. van Leerdam, S.C. van der Linden, B. van der Burg, A.P. van Wezel, P. de Voogt, High-Resolution mass spectrometric identification and quantification of glucocorticoid compounds in various wastewaters in the Netherlands, Environ. Sci. Technol., 44 (2010) 4766–4774.
  9. N. Creusot, S. Aït-Aïssa, N. Tapie, P. Pardon, F. Brion, W. Sanchez, E. Thybaud, J.M. Porcher, H. Budzinski, Identification of synthetic steroids in river water downstream from pharmaceutical manufacture discharges based on a bioanalytical approach and passive sampling, Environ. Sci. Technol., 48 (2014) 3649–3657.
  10. T. Isobe, K. Sato, K. Joon-Woo, S. Tanabe, G. Suzuki, K. Nakayama, Determination of natural and synthetic glucocorticoids in effluent of sewage treatment plants using ultrahigh performance liquid chromatography-tandem mass spectrometry, Environ. Sci. Pollut. Res., 22 (2015) 14127–14135.
  11. M. Pedrouzo, F. Borrull, R.M. Marcé, E. Pocurull, Ultrahigh-performance liquid chromatography-tandem mass spectrometry for determining the presence of eleven personal care products in surface and wastewaters, J. Chromatogr. A., 1216 (2009) 6994–7000.
  12. J. Roberts, P.A. Bain, A. Kumar, C. Hepplewhite, D.J. Ellis, A.G. Christy, S.G. Beavis, Tracking multiple modes of endocrine activity in Australia’s largest inland sewage treatment plant and effluent – receiving environment using a panel of in vitro bioassays, Environ. Toxicol. Chem., 34 (2015) 2271–2281.
  13. D. Shargil, P. Fine, Z. Gerstl, I. Nitsan, D. Kurtzman, Impact of biosolids and wastewater effluent application to agricultural land on corticosterone content in lettuce plants, Sci. Total. Environ., 541 (2016) 742–749.
  14. A. Lange, G.C. Paull, T.S. Coe, Y. Katsu, H. Urushitani, T. Iguchi, T.R. Charles, Sexual reprogramming and estrogenic sensitization in wild fish exposed to ethinylestradiol, Environ. Sci. Technol., 43 (2009) 1219–1225.
  15. M. Klavarioti, D. Mantzavinos, D. Kassinos, Removal of residual pharmaceuticals from aqueous systems by advanced oxidation processes, Environ. Int., 35 (2009) 402–417.
  16. V. Kumar, A.C. Johnson, A. Trubiroha, J. Tumov, M. Ihara, R. Grabic, W. Kloas, H. Tanaka, H.K. Kroupová, The challenge presented by progestins in ecotoxicological research: a critical review, Environ. Sci. Technol., 49 (2015) 2625–2638.
  17. Z.H. Liu, Y. Kanjo. S. Mizutani, Removal mechanisms for endocrine disrupting compounds (EDCs) in wastewater treatment – physical means, biodegradation, and chemical advanced oxidation: a review. Sci. Total Environ., 407 (2009) 731–748.
  18. Y. Zhou, X. Fang, T. Wang, Y. Hu, J. Lu, Chelating agents enhanced CaO2 oxidation of bisphenol A catalyzed by Fe3+ and reuse of ferric sludge as a source of catalyst, Chem. Eng. J., 313 (2017) 638–645.
  19. A. Zhang, J. Wang, Y. Li, Performance of calcium peroxide for removal of endocrine-disrupting compounds in waste activated sludge and promotion of sludge solubilization, Water. Res., 71 (2015) 125–139.
  20. Y. Xue, X. Gu, S. Lu, Z. Miao, M.L. Brusseau, M. Xu, X. Fu, X. Zhang, Z. Qiu, Q. Sui, The destruction of benzene by calcium peroxide activated with Fe(II) in water, Chem. Eng. J., 302 (2016) 187–193.
  21. S. Lu, X. Zhang, Y. Xue, Application of calcium peroxide in water and soil treatment: a review, J. Hazard. Mater., 337 (2017) 163–177.
  22. A.C. Ndjou’ou, D. Cassidy, Surfactant production accompanying the modified Fenton oxidation of hydrocarbons in soil, Chemosphere, 65 (2006) 1610–1615.
  23. B. Yang, J.J. Pignatello, D. Qu, B. Xing, Activation of hydrogen peroxide and solid peroxide reagents by phosphate ion in alkaline solution, Environ. Eng. Sci., 33 (2016) 193–199.
  24. Drugs.com U.S. Pharmaceutical Sales 2013. Available at: http://www.drugs.com/stats/top100/2013/units (Accessed on 21 May 2013).
  25. A. Amiri, M.R. Sabour, Multi-response optimization of Fenton process for applicability assessment in landfill leachate treatment, Waste. Manage., 34 (2014) 2528–2536.
  26. A.J. Jafari, B. Kakavandi, R.R. Kalantary, H. Gharibi, A. Asadi, A. Azari, A.A. Babaei, A. Takdastan. Application of mesoporous magnetic carbon composite for reactive dyes removal: process optimization using response surface methodology, Korean J. Chem. Eng., 33 (2016) 2878–2890.
  27. M. Ahmadi, B. Kakavandi, S. Jorfi, M. Azizi, Oxidative degradation of aniline and benzotriazole over PAC@FeIIFe2IIIO4: a recyclable catalyst in a heterogeneous photo-Fenton-like system, J. Photochem. Photobiol., A, 336 (2017) 42–53.
  28. A. Takdastan, B. Kakavandi, M. Azizi, M. Golshan, Efficient activation of peroxymonosulfate by using ferroferric oxide supported on carbon/UV/US system: a new approach into catalytic degradation of bisphenol A, Chem. Eng. J., 331 (2018) 729–743.
  29. D. Bingöl, S. Veli, S. Zor, U. Özdemir, Analysis of adsorption of reactive azo dye onto CuCl2 doped polyaniline using Box-Behnken design approach, Synth. Met., 162 (2012) 1566–1571.
  30. K.K. Doddapaneni, R. Tatineni, R. Potumarthi, L.N. Mangamoori, Optimization of media constituents through response surface methodology for improved production of alkaline proteases by Serratia rubidaea, J. Chem. Technol. Biotechnol., 82 (2007) 721–729.
  31. R. Myers, D. Montgomery, Response surface methodology: process and product optimization using designed experiments, 2nd ed., Wiley: New York, USA, 2002.
  32. C. García-Gómez, J.A. Vidales-Contreras, J. Nápoles-Armenta, P. Gortáres-Moroyoqui, Optimization of phenol removal using Ti/PbO2 anode with response surface methodology, J. Environ. Eng., 142 (2016) 04016004.
  33. A.M. Joglekar, A.T. May, Product excellence through design of experiments, Cereal. Foods. World., 32 (1987) 857–868.
  34. M. Behbahani, M.R. Alavi Moghaddam, M. Arami, Technoeconomical evaluation of fluoride removal by electrocoagulation process: optimization through response surface methodology, Desalination, 271 (2011) 209–218.
  35. A.J. Bora, S. Gogoi, G. Baruah, R.K. Dutta, Utilization of co-existing iron in arsenic removal from groundwater by oxidation-coagulation at optimized pH, J. Environ. Chem. Eng., 4 (2016) 2683–2691.
  36. A. Zhang, Y. Li, Removal of phenolic endocrine disrupting compounds from waste activated sludge using UV, H2O2, and UV/H2O2 oxidation processes: effects of reaction conditions and sludge matrix, Sci. Total Environ., 493 (2014) 307–323.
  37. X. Zhang, X. Gu, S. Lu, Z. Miao, M. Xu, X. Fu, Z. Qiu, Q. Sui, Degradation of trichloroethylene in aqueous solution by calcium peroxide activated with ferrous ion, J. Hazard. Mater., 284 (2015) 253–260.
  38. M. Sleiman, D. Vildozo, C. Ferronato, J.M. Chovelon, Photocatalytic degradation of azo dye Metanil Yellow: optimization and kinetic modeling using a chemometric approach, Appl. Catal. B – Environ., 77 (2007) 1–11.
  39. A.M. Salehi, G.M.K. Yaghmaeian, Preparation, characterization and catalytic activity of a novel mesoporous nanocrystalline MgO nanoparticle for ozonation of acetaminophen as an emerging water contaminant, Chem. Eng. J., 310 (2017) 157–169.
  40. M. Arienzo, Degradation of 2, 4, 6- trinitrotoluene in water and soil slurry utilizing a calcium peroxide compound, Chemosphere, 40 (2000) 331–337.
  41. A. Zhang, X. Shen, X. Yin, X. Li, Y. Liu, Application of calcium peroxide for efficient removal of triamcinolone acetonide from aqueous solutions: mechanisms and products, Chem. Eng. J., 345 (2018) 594–603.
  42. P. Westerhoff, P. Chao, H. Mash, Reactivity of natural organic matter with aqueous chlorine and bromine, Water. Res., 38 (2004) 1502–1513.
  43. W. Sandra, C.S. Leopold, R.H. Guy, Bioavailability and bioequivalence of topical glucocorticoids, Eur. J. Pharm. Biopharm., 68 (2008) 453–466.
  44. Y. Zhang, J. Zhang, Y. Xiao, V.W.C. Chang, T.T. Lim, Kinetic and mechanistic investigation of azathioprine degradation in water by UV, UV/H2O2 and UV/persulfate, Chem. Eng. J., 302 (2016) 526–534.
  45. N. Creusot, S. Ait-Aissa, N. Tapie, P. Pardon, F. Brion, W. Sanchez, E. Thybaud, J.M. Porcher, H. Budzinski, Identification of synthetic steroids in river water downstream from pharmaceutical manufacture discharges based on a bioanalytical approach and passive sampling, Environ. Sci. Technol., 48 (2014) 3649–3657.
  46. A.L. Carlie, L.V. Daniel, W.O. Allen, K.M. Elizabeth, D.K. Michael, M.J. Kathleen, J.D. Elizabeth, A.M. Elizabeth, A.B. Chad, E.C. Jenna, M.T. Linnea, M.S. Sara, Y.S. Sarah, C.W. Leah, D.J. Rodney, T.A. Gerald, Effects of a glucocorticoid receptor agonist, dexamethasone, on fathead minnow reproduction, growth, and development, Environ. Toxicol. Chem., 31 (2012) 611–622.
  47. S. Kugathas, R.J. Williams, J.P. Sumpter, Prediction of environmental concentrations of glucocorticoids: the River Thames, UK, Environ. Int., 40 (2012) 15–23.
  48. T. Anumol, S. Merel, B. Clarke, S. Snyder, Ultra high performance liquid chromatography tandem masss pectrometry for rapid analysis of trace organic contaminants in water, Cent. Eur. J. Chem., 7 (2013) 1–14.
  49. H. Chang, J.Y. Hu, B. Shao, Occurrence of natural and synthetic glucocorticoids in sewage treatment plants and receiving river waters, Environ. Sci. Technol., 41 (2007) 3462–3468.
  50. P.A. Bain, M. Williams, A. Kumar, Assessment of multiple hormonal activities in wastewater at different stages of treatment, Environ. Toxicol. Chem., 33 (2014) 2297–2307.
  51. A. Jia, B.I. Escher, F.D.L. Leusch, J.Y.M. Tang, E. Prochazka, B.F. Dong, E.M. Snyder, S.A. Snyder, In vitro bioassays to evaluate complex chemical mixtures in recycled water, Water. Res., 80 (2015) 1–11.
  52. A.C. Mehinto, A. Jia, S.A. Snyder, B.S. Jayasinghe, N.D. Denslow, J. Crago, D. Schlenk, C. Menzie, S.D. Westerheide, F.D.L. Leusch, K.A. Maruya, Interlaboratory comparison of in vitro bioassays for screening of endocrine active chemicals in recycled water, Water. Res., 83 (2015) 303–309.
  53. Z.L. Fan, S.M. Wu, H. Chang, J.Y. Hu, Behaviors of glucocorticoids, androgens and progestogens in a municipal sewage treatment plant: comparison to estrogens, Environ. Sci. Technol., 45 (2011) 2725–2733.
  54. A. Piram, A. Salvador, J.Y. Gauvrit, P. Lanteri, R. Faure, Development and optimisation of a single extraction procedure for the LC/MS/MS analysis of two pharmaceutical classes residues in sewage treatment, plant. Talanta, 74 (2008) 1463–1475.
  55. S.C. Van der Linden, M.B. Heringa, H.Y. Man, E. Sonneveld, L.M. Puijker, A. Brouwer, B. Van der Burg, Detection of multiple hormonal activities in wastewater effluents and surface water, using a panel of steroid receptor CALUX bioassays, Environ. Sci. Technol., 42 (2008) 5814–5820.
  56. M. Schriks, J.A. van Leerdam, S.C. van der Linden, B. van der Burg, A.P. van Wezel, P. de Voogt, High-Resolution mass spectrometric identification and quantification of glucocorticoid compounds in various wastewaters in the Netherlands, Environ. Sci. Technol., 44 (2010) 4766–4774.
  57. G. Suzuki, K. Sato, T. Isobe, H. Takigami, A. Brouwer, K. Nakayama, Detection of glucocorticoid receptor agonists in effluents from sewage treatment plants in Japan, Sci. Total. Environ., 527 (2015) 328–334.
  58. P. Macikova, K.J. Groh, A.A. Ammann, K. Schirmer, M.J.F. Suter, Endocrine disrupting compounds affecting corticosteroid signaling pathways in Czech and Swiss Waters: Potential Impact on Fish, Environ. Sci. Technol., 48 (2014) 12902–12911.