References

  1. H. Tanaka, Theoretical analysis of a vertical multiple-effect diffusion solar still coupled with a tilted wick still, Desalination, 337 (2016) 65–72.
  2. H. Tanaka, Parametric investigation of a vertical multiple-effect diffusion solar still coupled with a tilted wick still, Desalination, 408 (2017) 119–126.
  3. H. Tanaka, K. Iishi, Experimental study of a vertical singleeffect diffusion solar still coupled with a tilted wick still, Desalination,402 (2017) 19–24.
  4. T. Rajaseenivasan, K.K. Murugavel, T. Elango, R.S. Hansen, A review of different methods to enhance the productivity of the multi-effect solar still, Renew. Sustain. Energy Rev., 17 (2013) 248–259.
  5. K.S. Reddy, H. Sharon, Active multi-effect vertical solar still: mathematical modeling performance investigation and enviroeconomic analyses, Desalination, 395 (2016) 99–120.
  6. A.K. Kaushal, M.K. Mittal, D. Gangacharyulu, An experimental study of floating wick basin type vertical multiple effect diffusion solar still with waste heat recovery, Desalination, 414 (2017) 35–45.
  7. A. Alkhudhiri, N. Hilal, Air gap membrane distillation: a detailed study of high saline solution, Desalination, 403 (2017) 179–186.
  8. A. Alkhudhiri, N. Darwish, N. Hilal, Produced water treatment: application of air gap membrane distillation, Desalination, 309 (2013) 46–51.
  9. J. Li, Y. Guan, F. Cheng, Y. Liu, Treatment of high salinity brines by direct contact membrane distillation: effect of membrane characteristics and salinity, Chemosphere, 140 (2015) 143–149.
  10. L. Eykens, I. Hitsov, K.D. Sitter, C. Dotremont, L. Pinoy, B. Van der Bruggen, Direct contact and air gap membrane distillation: differences and similarities between lab and pilot scale, Desalination, 422 (2017) 91–100.
  11. H. Attia, M.S. Osman, D.J. Johnson, C. Wright, N. Hilal, Modelling of air gap membrane distillation and its application in heavy metals removal, Desalination, 424 (2017) 27–36.
  12. F. Mahmoudi, G.M. Goodarzi, S. Dehghani, A. Akbarzadeh, Experimental and theoretical study of a lab scale permeate gap membrane distillation setup for desalination, Desalination, 419 (2017) 197–210.
  13. J. S. Leu, J.Y. Jang, C. Yin, Heat and mass transfer for liquid film evaporation along a vertical plate covered with a thin porous layer, Int. J. Heat Mass Transfer, 49 (2006) 1937–1945.
  14. S. Ming-Hsyan, M.J. Huang, C.K. Chen, A study of the liquid evaporation with Darcian resistance effect on mixed convection in porous media, Int. Commun. Heat Mass Transfer, 32 (2005) 685–694.
  15. A.G. Yiotis, A.G. Boudouvis, A.K. Stubos, I.N. Tsimpanogiannis, Y.C. Yortsos, Effect of liquid films on the drying of porous media, AIChE J., 50 (2004) 2721–2737.
  16. S. Shirazian, S.N. Ashrafizadeh, 3D modeling and simulation of mass transfer in vapor transport through porous membranes, Chem. Eng. Technol., 36 (2013) 177–185.
  17. N. Tang, H. Zhang, W. Wang, Computational fluid dynamics numerical simulation of vacuum membrane distillation for aqueous NaCl solution, Desalination, 274 (2011) 120–129.
  18. L. Wang, H. Wang, B. Li, Y. Wang, S. Wang, Novel design of liquid distributors for VMD performance improvement based on cross-flow membrane module, Desalination, 336 (2014) 80–86.
  19. L. Ma, Research on solar desalination plant, Chang 'an: Chang 'an University, 2010.
  20. J. Liu, Simulation of the microscopic characteristics of pressure reducing membrane distillation process, Tianjin: Tianjin University, 2015.
  21. J. Liu, B.A. Li, Simulation analysis of thermal mass transfer characteristics of fiber membrane surface in pressure reducing membrane distillation process, Chem. Ind. Eng., 33 (2016) 80–87.
  22. K. Xu, B.A. Li, CFD numerical simulation of flow field in a new plate-frame air gap membrane distillation module, Membr. Sci. Technol., 37 (2017) 88–95.
  23. I. Janajreh, K.E. Kadi, R. Hashaikeh, R. Ahmed, Numerical investigation of air gap membrane distillation (AGMD): seeking optimal performance, Desalination, 424 (2017) 122–130.
  24. A. Ali, J.H. Tsai, K.L. Tung, E. Drioli, F. Macedoni. Designing and optimization of continuous direct contact membrane distillation process, Desalination, 426 (2018) 97–107.
  25. A. Nasr, A.S. Al-Ghamdi, Numerical study of evaporation of falling liquid film on one of two vertical plates covered with a thin porous layer by free convection, Int. J. Thermal Sci., 112 (2017) 335–344.
  26. A.S. Alsaadi, N. Ghaffour, J.D. Li, S. Gray, L. Francis, H. Maab, G.L. Amy, Modeling of air-gap membrane distillation process: a theoretical and experimental study, J. Membr. Sci., 445 (2013) 53–65.
  27. X.H. Wang, M.D. Zhou, H.J. Cheng, Calculation of thermal properties of wet air, The Papers Collection of the Fourth Annual Meeting of National Regional Energy Professional Committee, Engineering Science and Technology II—ArchitecturalScience and Engineering, Mudanjiang: China Society of Architecture Building Thermal Power Branch, (2013) 482–485.
  28. S.G. Lovineh, M. Asghari, B. Rajaei, Numerical simulation and theoretical study on simultaneous effects of operating parameters in vacuum membrane distillation, Desalination, 314 (2013) 59–66.
  29. H. Geng, H. Wu, P. Li, Q. He, Study on a new air-gap membrane distillation module for desalination, Desalination, 334 (2014) 29–38.
  30. J.M. Yan, Q.P. Yuan, R.Y. Ma, Study on the transfer process of air gap membrane distillation, J. Chem. Eng. Chinese Universities, 14 (2000) 109–114.