References

  1. P. Ju, P. Wang, B. Li, H. Fan, S. Ai, D. Zhang, Y. Wang, A novel calcined Bi2WO6/BiVO4 heterojunction photocatalyst with highly enhanced photocatalytic activity, Chem. Eng. J., 236 (2014) 430–437.
  2. T. Saison, N. Chemin, C. Chaneac, O. Durupthy, V. Ruaux, L. Mariey, F. Mauge, P. Beaunier, J.P. Jolivet, Bi2O3, BiVO4, and Bi2WO6: impact of surface properties on photocatalytic activity under visible light, J. Phys. Chem. C., 115 (2011) 5657–5666.
  3. D. Ma, S. Huang, W. Chen, S. Hu, F. Shi, K. Fan, Selfassembled three-dimensional hierarchical umbilicate Bi2WO6 microspheres from nanoplates: controlled synthesis, photocatalytic activities, and wettability, J. Phys. Chem. C., 113 (2009) 4369–4374.
  4. M.S. Gui, W.D. Zhang, Y.Q. Chang, Y.X. Yu, One-step hydrothermal preparation strategy for nanostructured WO3/Bi2WO6 heterojunction with high visible light photocatalytic activity, Chem. Eng. J., 197 (2012) 283–288.
  5. M.S. Gui, W.D. Zhang, Q.X. Su, C.H Chen, Preparation and visible light photocatalytic activity of Bi2O3/Bi2WO6 heterojunction photocatalysts, J. Solid. State. Chem., 184 (2011) 1977–1982.
  6. Z.Q. Li, X.T. Chen, Z.L. Xue, Microwave-assisted synthesis and photocatalytic properties of flower-like Bi2WO6 and Bi2O3–Bi2WO6 composite, J. Colloid. Interface. Sci., 394 (2013) 69–77.
  7. W. He, Y. Sun, G. Jiang, H. Huang, X. Zhang, F. Dong, Activation of amorphous Bi2WO6 with synchronous Bi metal and Bi2O3 coupling: photocatalysis mechanism and reaction pathway, Appl. Catal., B., 232 (2018) 340–347.
  8. Y. Liu, H. Tang, H. Lv, P. Zhang, Z. Ding, S. Li, J. Guang, Facile hydrothermal synthesis of TiO2/Bi2WO6 hollow microsphere with enhanced visible-light photoactivity, Powder. Technol., 283 (2015) 246–253.
  9. Z. Du, C. Cheng, L. Tan, J. Lan, S. Jiang, L. Zhao, R. Guo, Enhanced photocatalytic activity of Bi2WO6/TiO2 composite coated polyester fabric under visible light irradiation, Appl. Surf. Sci., 435 (2018) 626–634.
  10. Q. Guo, Y. Huang, H. Xu, D. Luo, F. Huang, L. Gu, Y. Wei, H. Zhao, L. Fan, J. Wu, The effects of solvent on photocatalytic properties of Bi2WO6/TiO2 heterojunction under visible light irradiation, Solid. State. Sci., 78 (2018) 95–106.
  11. X. Song, H. Wang, Y. Li, S. Ye, D.D. Dionysiou, Solvothermal synthesis of P25/Bi2WO6 nanocomposite photocatalyst and photocatalytic degradation of ethylene under visible light, Appl. Surf. Sci., 439 (2018) 815–822.
  12. L. Yuan, K.Q. Lu, F. Zhang, X. Fu, Y.J. Xu, Unveiling the interplay between light-driven CO2 photocatalytic reduction and carbonaceous residues decomposition: a case study of Bi2WO6-TiO2 binanosheets, Appl. Catal. B., 237 (2018) 424–431.
  13. M.S. Gui, W.D. Zhang, A facile preparation strategy for hollow-structured Bi2O3/Bi2WO6 heterojunction with high visible light photocatalytic activity, J. Phys. Chem. Solids., 73 (2012) 1342–1349.
  14. Y.J. Hao, F.T. Li, F. Chen, M.J. Chai, R.H. Liu, X.J. Wang, In situ one-step combustion synthesis of Bi2O3/Bi2WO6 heterojunctions with notable visible light photocatalytic activities, Mater. Lett., 124 (2014) 1–3.
  15. Q. Zhang, Z. Dai, G. Cheng, Y. Liu, R. Chen, In-situ roomtemperature synthesis of amorphous/crystalline contact Bi2S3/Bi2WO6 heterostructures for improved photocatalytic ability, Ceram. Int., 43 (2017) 11296–11304.
  16. S. Adhikari, D.H. Kim, Synthesis of Bi2S3/Bi2WO6 hierarchical microstructures for enhanced visible light driven photocatalytic degradation and photoelectrochemical sensing of ofloxacin, Chem. Eng. J., 354 (2018) 692–705.
  17. X. Zhang, Y. Gong, X. Dong, X. Zhang, C. Ma, F. Shi, Fabrication and efficient visible light-induced photocatalytic activity of Bi2WO6/BiVO4 heterojunction, Mater. Chem. Phys., 136 (2012) 472–476.
  18. S. Chaiwichian, B. Inceesungvorn, K. Wetchakun, S. Phanichphant, W. Kangwansupamonkon, N. Wetchakun, Highly efficient visible-light-induced photocatalytic activity of Bi2WO6/BiVO4 heterojunction photocatalysts, Mater. Res. Bull., 54 (2014) 28–33.
  19. S. Xue, Z. Wei, X. Hou, W. Xie, S. Li, X. Shang, D. He, Enhanced visible-light photocatalytic activities and mechanism insight of BiVO4/Bi2WO6 composites with virus-like structures, Appl. Surf. Sci., 355 (2015) 1107–1115.
  20. F.J. Zhang, S.F. Zhu, F.Z. Xie, J. Zhang, Z.D. Meng, Plate-onplate structured Bi2MoO6/Bi2WO6 heterojunction with highefficiently gradient charge transfer for decolorization of MB, Sep. Purif. Technol., 113 (2013) 1–8.
  21. S. Chaiwichian, K. Wetchakun, W. Kangwansupamonkon, N. Wetchakun, Novel visible-light-driven BiFeO3-Bi2WO6 nanocomposites toward degradation of dyes, J. Photochem. Photobiol. A., 349 (2017) 183–192.
  22. C.H. Wu, C.Y. Kuo, J.T. Wu, M.J. Hsu, T.J. Jhang, Photodegradation of C.I. Reactive Red 2 in the Bi2WO6 system: determination of surface characteristics and photocatalytic activities of Bi2WO6, React. Kinet. Mech. Catal., 117 (2016) 391–404.
  23. Y. Lu, K. Zhao, Y. Zhao, S. Zhu, X. Yuan, M. Huo, Y. Zhang, Y. Qiu, Bi2WO6/TiO2/Pt nanojunction system: a UV-vis light responsive photocatalyst with high photocatalytic performance, Colloids. Surf., 481 (2015) 252–260.
  24. C. Yu, W. Zhou, L. Zhu, G. Li, K. Yang, R. Jin, Integrating plasmonic Au nanorods with dendritic like α-Bi2O3/Bi2O2CO3 heterostructures for superior visible-light-driven photocatalysis, Appl. Catal., B., 184 (2016) 1–11.
  25. L. Yue, S. Wang, G. Shan, W. Wu, L. Qiang, L. Zhu, Novel MWNTs-Bi2WO6 composites with enhanced simulated solar photoactivity toward adsorbed and free tetracycline in water, Appl. Catal., B., 176–177 (2015) 11–19.
  26. T. Li, S. Luo, Hydrothermal synthesis of Ag2O/Bi2O3 microspheres for efficient photocatalytic degradation of Rhodamine B under visible light irradiation, Ceram. Int., 41 (2015) 13135–13146.
  27. R. Hu, X. Xiao, S.Tu, X. Zuo, J. Nan, Synthesis of flowerlike heterostructured β-Bi2O3/Bi2O2CO3 microspheres using Bi2O2CO3 self-sacrifice precursor and its visible-light-induced photocatalytic degradation of o-phenylphenol, Appl. Catal., B., 163 (2015) 510–519.
  28. X. Bing, J. Li, J. Liu, X. Cui, F. Ji, Biomimetic synthesis of Bi2O3/Bi2WO6/MgAl-CLDH hybrids from lotus pollen and their enhanced adsorption and photocatalysis performance, J. Photochem. Photobiol., A., 364 (2018) 449–460.
  29. P. Zhang, X. Teng, X. Feng, S. Ding, G. Zhang, Preparation of Bi2WO6 photocatalyst by high-energy ball milled Bi2O3-WO3 mixture, Ceram. Int., 42 (2016) 16749–16757.
  30. S. Li, S. Hu, W. Jiang, Y. Liu, J. Liu, Z. Wang, Facile synthesis of flower-like Ag3VO4/Bi2WO6 heterojunction with enhanced visible-light photocatalytic activity, J. Colloid. Interface. Sci., 501 (2017) 156–163.
  31. Y. Chen, S. Yang, K. Wang, L. Lou, Role of primary active species and TiO2 surface characteristic in UV-illuminated photodegradation of Acid Orange 7, J. Photochem. Photobiol., A., 172 (2005) 47–54.
  32. H. Huang, K. Liu, K. Chen, Y. Zhang, Y. Zhang, S. Wang, Ce and F comodification on the crystal structure and enhanced photocatalytic activity of Bi2WO6 photocatalyst under visible light irradiation, J. Phys. Chem. C., 118 (2014) 14379–14387.
  33. S. Dong, X. Ding, T. Guo, X. Yue, X. Han, J. Sun, Self-assembled hollow sphere shaped Bi2WO6/RGO composites for efficient sunlight-driven photocatalytic degradation of organic pollutants, Chem. Eng. J., 316 (2017) 778–789.
  34. J. Cheng, Y. Shen, K. Chen, X. Wang, Y. Guo, X. Zhou, R. Bai, Flower-like Bi2WO6/ZnO composite with excellent photocatalytic capability under visible light irradiation, Chin. J. Catal., 39 (2018) 810–820.
  35. S.G. Kumar, K.S.R.K. Rao, Tungsten-based nanomaterials (WO3 and Bi2WO6): modifications related to charge carrier transfer mechanisms and photocatalytic applications, Appl. Surf. Sci., 355 (2015) 939–958.
  36. S.G. Meng, D.Z. Li, M. Sun, W.J. Li, J.X. Wang, J. Chen, X.Z. Fu, G.C. Xiao, Sonochemical synthesis, characterization and photocatalytic properties of a novel cube-shaped CaSn(OH)6, Catal. Commun., 12 (2011) 972–975.
  37. L.S. Zhang, K.H. Wong, H.Y. Yip, C. Hu, J.C. Yu, C.Y. Chan, P.K. Wong, Effective photocatalytic disinfection of E. coli K-12 using AgBr-Ag-Bi2WO6 nanojunction system irradiated by visible light: the role of diffusing hydroxyl radicals, Environ. Sci. Technol., 44 (2010) 1392–1398.
  38. J. Zhong, J. Li, J. Zeng, X. He, S. Huang, W. Jiang, M. Li, Enhanced photocatalytic activity of In2O3-decorated TiO2, Appl. Phys. A., 115 (2014) 1231–1238.
  39. M.C. Yin, Z.S. Li, J.H. Kou, Z.G. Zou, Mechanism investigation of visible light-Induced degradation in a heterogeneous TiO2/Eosin Y/Rhodamine B system, Environ. Sci. Technol., 43 (2009) 8361–8366.
  40. X. Zheng, Q. Yang, S. Huang, J. Zhong, J. Li, R. Yang, Y. Zhang, Enhanced separation efficiency of photo-induced charge pairs and sunlight-driven photocatalytic performance of TiO2 prepared with the assistance of NH4Cl, J. Sol-Gel. Sci. Technol., 83 (2017) 174–180.
  41. T.P. Cao, Y.J. Li, C.H. Wang, Z.Y. Zhang, M.Y. Zhang, C.L. Shao, Y.C. Liu, Bi4Ti3O12 nanosheets/TiO2 submicron fibers heterostructures: in situ fabrication and high visible light photocatalytic activity, J. Mater. Chem., 21 (2011) 6922–6927.
  42. X. Meng, Z. Zhang, Bismuth-based photocatalytic semiconductors: introduction, challenges and possible approaches, J. Mol. Catal. A: Chem., 423 (2016) 533–549.