References

  1. S.A. Snyder, S. Adham, A.M. Redding, F.S. Cannon, J. Decarolis, J. Oppenheimer, E.C. Wert, Y. Yoon, Role of membranes and activated carbon in the removal of endocrine disruptors and pharmaceuticals, Desalination, 202 (2007) 156–181.
  2. R.W. Baker, Membrane Technology and Applications, 2nd ed., Wiley, Chichester, 2004.
  3. S. Judd, C. Judd, The MBR Book: Principles and Applications of Membrane Bioreactors for Water and Wastewater Treatment, 2nd ed., Elsevier, Oxford, 2011.
  4. G. Daufin, J.P. Escudier, H. Carrere, S. Berot, L. Fillaudeau, M. Decloux, Recent and emerging applications of membrane processes in the food and dairy industry, Food Bioprod. Process., 79 (2001) 89–102.
  5. M. Hlavacek, F. Bouchet, Constant flowrate blocking laws and an example of their application to dead-end microfiltration of protein solutions, J. Membr. Sci., 82 (1993) 285–295.
  6. S. Chellam, W. Xu, Blocking laws analysis of dead-end constant flux microfiltration of compressible cakes, J. Colloid Interface Sci., 301 (2006) 248–257.
  7. G. Bolton, L.C. Dan, R. Kuriyel, Combined models of membrane fouling: Development and application to microfiltration and ultrafiltration of biological fluids, J. Membr. Sci., 277 (2006) 75–84.
  8. F. Wang, V.V. Tarabara, Pore blocking mechanisms during early stages of membrane fouling by colloids, J. Colloid Interface Sci., 328 (2008) 464–469.
  9. A. Zarragoitia-González, S. Schetrite, M. Alliet, U. Jáuregui-Haza, C. Albasi, Modelling of submerged membrane bioreactor: Conceptual study about link between activated slugde biokinetics, aeration and fouling process, J. Membr. Sci., 325 (2008) 612–624.
  10. S. Chellam, N.G. Cogan, Colloidal and bacterial fouling during constant flux microfiltration: comparison of classical blocking laws with a unified model combining pore blocking and EPS secretion, J. Membr. Sci., 382 (2011) 148–157.
  11. D. Franco, A. Mato, F.J. Salgado, M. Lópezpedrouso, M. Carrera, S. Bravo, M. Parrado, J.M. Gallardo, C. Zapata, Tackling proteome changes in the longissimus thoracis bovine muscle in response to pre-slaughter stress, J. Proteomics, 122 (2015) 73–85.
  12. Y. Shen, W. Zhao, K. Xiao, X. Huang, A systematic insight into fouling propensity of soluble microbial products in membrane bioreactors based on hydrophobic interaction and size exclusion, J. Membr. Sci., 346 (2010) 187–193.
  13. M. Ahsani, R. Yegani, Study on the fouling behavior of silica nanocomposite modified polypropylene membrane in purification of collagen protein, Chem. Eng. Res. Des., 102 (2015) 261–273.
  14. M. Ahsani, M.D. Havigh, R. Yegani, Fouling mechanisms during protein microfiltration: the effects of protein structure and filtration pressure on polypropylene microporous membrane performance, Polyolefins J., 4 (2017) 175–189.
  15. C. Rai, P. Rai, G.C. Majumdar, S. De, S. Dasgupta, Mechanism of permeate flux decline during microfiltration of watermelon (Citrullus lanatus) juice, Food Bioprocess Technol., 3 (2010) 545–553.
  16. M.K. Purkait, P.K. Bhattacharya, S. De, Membrane filtration of leather plant effluent: flux decline mechanism, J. Membr. Sci., 258 (2005) 85–96.
  17. M.C.V. Vela, S. Álvarez Blanco, J. Lora García, E. Bergantiños Rodríguez, Analysis of membrane pore blocking models adapted to crossflow ultrafiltration in the ultrafiltration of PEG, Chem. Eng. J., 149 (2009) 232–241.
  18. S.J. Lee, M. Dilaver, P.K. Park, J.H. Kim, Comparative analysis of fouling characteristics of ceramic and polymeric microfiltration membranes using filtration models, J. Membr. Sci., 432 (2013) 97–105.
  19. F. Lotfi, B. Samali, D. Hagare, Cleaning efficiency of the fouled forward osmosis membranes under different experimental conditions, J. Environ. Chem. Eng., 6 (2018) 4555–4563.
  20. F. Arndt, F. Ehlen, S. Schütz, H. Anlauf, H. Nirschl, Influence of operating parameters and membrane materials on fouling of ceramic hollow fibre membranes, Sep. Purif. Technol., 171 (2016) 289–296.
  21. Y. Luo, P. Leclech, R.K. Henderson, Assessment of membrane photobioreactor (MPBR) performance parameters and operating conditions, Water Res., 138 (2018) 169–180.
  22. H. Cho, Y. Choi, S. Lee, Effect of pretreatment and operating conditions on the performance of membrane distillation for the treatment of shale gas wastewater, Desalination, 437 (2018) 195–209.
  23. I.S. Chang, S.O. Bag, C.H. Lee, Effects of membrane fouling on solute rejection during membrane filtration of activated sludge, Process Biochem., 36 (2001) 855–860.
  24. H. Fan, K. Xiao, S. Mu, Y. Zhou, J. Ma, X. Wang, X. Huang, Impact of membrane pore morphology on multi-cycle fouling and cleaning of hydrophobic and hydrophilic membranes during MBR operation, J. Membr. Sci., 556 (2018) 312–320.
  25. Z. Li, D. Rana, Z. Wang, T. Matsuura, C.Q. Lan, Synergic effects of hydrophilic and hydrophobic nanoparticles on performance of nanocomposite distillation membranes: an experimental and numerical study, Sep. Purif. Technol., 202 (2018) 45–58.
  26. D.C. Banti, P. Samaras, C. Tsioptsias, A. Zouboulis, M. Mitrakas, Mechanism of SMP aggregation within the pores of hydrophilic and hydrophobic MBR membranes and aggregates detachment, Sep. Purif. Technol., 202 (2018) 119–129.
  27. C.C. Ho, A.L. Zydney, Effect of membrane morphology on the initial rate of protein fouling during microfiltration, J. Membr. Sci., 155 (1999) 261–275.
  28. C.C. Ho, A.L. Zydney, Theoretical analysis of the effect of membrane morphology on fouling during microfiltration, Sep. Sci. Technol., 34 (1999) 2461–2483.
  29. X. Kang, J. Sun, Y. Mo, F. Zhou, L. Peng, H. Xia, J. Ma, B. Ma, Effect of membrane pore morphology on microfiltration organic fouling: PTFE/PVDF blend membranes compared with PVDF membranes, Desalination, 343 (2014) 217–225.
  30. F.M. Tiller, C.S. Yeh, Relative liquid removal in filtration and expression, Filtr. Sep., 27 (1990) 129–135.