References

  1. H. Song, Y. Liu, W. Xu, G. Zeng, N. Aibibu, L. Xu, B. Chen, Simultaneous Cr (VI) reduction and phenol degradation in pure cultures of Pseudomonas aeruginosa CCTCC AB91095, Bioresour. Technol., 100 (2009) 5079–5084.
  2. S. Golbaz, A.J. Jafari, M. Rafiee, R.R. Kalantary, Separate and simultaneous removal of phenol, chromium, and cyanide from aqueous solution by coagulation/precipitation: mechanisms and theory, Chem. Eng. J., 253 (2014) 251–257.
  3. A. Gupta, C. Balomajumder, Simultaneous adsorption of Cr (VI) and phenol onto tea waste biomass from binary mixture: multicomponent adsorption, thermodynamic and kinetic study, J. Environ. Chem. Eng., 3 (2015) 785–796.
  4. M. Arulkumar, K. Thirumalai, P. Sathishkumar, T. Palvannan, Rapid removal of chromium from aqueous solution using novel prawn shell activated carbon, Chem. Eng. J., 185 (2012) 178–186.
  5. J. Cao, Y. Wu, Y. Jin, P. Yilihan, W. Huang, Response surface methodology approach for optimization of the removal of chromium (VI) by NH2-MCM-41, J. Taiwan Inst. Chem. Eng., 45 (2014) 860–868.
  6. B. Agarwal, C. Balomajumder, P.K Thakur, Simultaneous co-adsorptive removal of phenol and cyanide from binary solution using granular activated carbon, Chem. Eng. J., 228 (2013) 655–664.
  7. V. Neagu, S. Mikhalovsky, Removal of hexavalent chromium by new quaternized crosslinked poly (4-vinylpyridines), J. Hazard. Mater., 183 (2010) 533–540.
  8. L.M. De Oliveira, L.Q. Ma, J.A. Santos, L.R. Guilherm, Effects of arsenate, chromate, and sulfate on arsenic and chromium uptake and translocation by arsenic hyperaccumulator Pteris vittata L. Environ. Pollut., 184 (2014) 187–192.
  9. N. Talreja, D. Kumar, N. Verma, Removal of hexavalent chromium from water using Fe-grown carbon nanofibers containing porous carbon microbeads, J. Water Process Eng., 3 (2014) 34–45.
  10. S. Kumar, M. Zafar, J.K. Prajapati, S. Kumar, S. Kannepalli, Modeling studies on simultaneous adsorption of phenol and resorcinol onto granular activated carbon from simulated aqueous solution, J. Hazard. Mater., 185 (2011) 287–294.
  11. G. Yang, L. Tang, G. Zeng, Y. Cai, J. Tang, Y. Pang, W. Xiong, Simultaneous removal of lead and phenol contamination from water by nitrogen-functionalized magnetic ordered mesoporous carbon, Chem. Eng. J., 259 (2015) 854–864.
  12. E. Pehlivan, S. Cetin, Sorption of Cr (VI) ions on two Lewatitan ion exchange resins and their quantitative determination using UV–visible spectrophotometer, J. Hazard. Mater., 163 (2009) 448–453.
  13. A. Fakhri, Application of response surface methodology to optimize the process variables for fluoride ion removal using maghemite nanoparticles, J. Saudi Chem. Soc., 18 (2014) 340–347.
  14. M. Sabonian, M.A. Behnajady, Artificial neural network modeling of Cr (VI) photocatalytic reduction with TiO2-P25 nanoparticles using the results obtained from response surface methodology optimization, Desal. Wat. Treat., 56 (2015) 2906–2916.
  15. J.P. Maran, B. Priya, Comparison of response surface methodology and artificial neural network approach towards efficient ultrasound-assisted biodiesel production from muskmelon oil, Ultrason. Sonochem., 23 (2015) 192–200.
  16. N.G. Turan, B. Mesci, O. Ozgonenel, The use of artificial neural networks (ANN) for modeling of adsorption of Cu (II) from industrial leachate by pumice, Chem. Eng. J., 171 (2011) 1091–1097.
  17. M. Khajeh, M.G. Moghaddam, M. Shakeri, Application of artificial neural network in predicting the extraction yield of essential oils of Diplotaenia cachrydifolia by supercritical fluid extraction, J. Supercrit. Fluids, 69 (2012) 91–96.
  18. F. Geyikçi, E. Kılıç, S. Çoruh, S. Elevli, Modelling of lead adsorption from industrial sludge leachate on red mud by using RSM and ANN, Chem. Eng. J., 183 (2012) 53–59.
  19. G.E.P. Box, K.B. Wilson, On the experimental attainment of optimum conditions, Roy. Statist. Soc, Ser. B., 13 (1951) 1–38.
  20. M. Sarkar, D. Santra, Modeling fluoride adsorption on ceriumloaded cellulose bead — response surface methodology, equilibrium, and kinetic studies, Water Air Soil Pollut., 226 (2015) 1–14.
  21. M. Roosta, M. Ghaedi, A. Daneshfar, S. Darafarin, R. Sahraei, M.K. Purkait, Simultaneous ultrasound-assisted removal of sunset yellow and erythrosine by ZnS: Ni nanoparticles loaded on activated carbon: optimization by central composite design, Ultrason. Sonochem., 21 (2014) 1441–1450.
  22. M.B. Hossain, N.P. Brunton, A. Patras, B. Tiwari, C.P.O. Donnell, A.B. Martin-Diana, C.B. Ryan, Optimization of ultrasound assisted extraction of antioxidant compounds from marjoram (Origanum majorana L.) using response surface methodology, Ultrason. Sonochem., 19 (2012) 582–590.
  23. A. Asfaram, M. Ghaedi, S. Hajati, A. Goudarzi, A.A. Bazrafshan, Simultaneous ultrasound-assisted ternary adsorption of dyes onto copper-doped zinc sulfide nanoparticles loaded on activated carbon: optimization by response surface methodology, Spectrochim. Acta, Part A, 145 (2015) 203–212.
  24. G. Derringer, R. Suich, Simultaneous optimization of several response variables, J. Qual. Technol., 12 (1980) 214–219.
  25. M. Dutta, J.K. Basu, Application of artificial neural network for prediction of Pb (II) adsorption characteristics, Environ. Sci. Pollut. Res., 20 (2013) 3322–3330.
  26. H. Ebrahimzadeh, N. Tavassoli, O. Sadeghi, M.M. Amini, Optimization of solid-phase extraction using artificial neural networks and response surface methodology in combination with experimental design for determination of gold by atomic absorption spectrometry in industrial wastewater samples, Talanta, 97 (2012) 211–217.
  27. W. Song, B. Gao, X. Xu, L. Xing, S. Han, P. Duan, R. Jia, Adsorption–desorption behavior of magnetic amine/Fe3O4 functionalized biopolymer resin towards anionic dyes from wastewater, Bioresour. Technol., 210 (2016) 123–130.
  28. Y. Zhou, Q. Jin, T. Zhu, Y. Akama, Adsorption of chromium (VI) from aqueous solutions by cellulose modified with β-CD and quaternary ammonium groups, J. Hazard. Mater., 187 (2011) 303–310.
  29. F. Nekouei, S. Nekouei, I. Tyagi, V.K. Gupta, Kinetic, thermodynamic and isotherm studies for acid blue 129 removal from liquids using copper oxide nanoparticle-modified activated carbon as a novel adsorbent, J. Mol. Liq., 201 (2015) 124–133.
  30. S. Sugashini, K.M.M.S. Begum, Optimization using central composite design (CCD) for the biosorption of Cr(VI) ions by cross linked chitosan carbonized rice husk (CCACR), Clean Technol. Environ. Policy, 15 (2012) 293–302.
  31. K. Abburi, Adsorption of phenol and p-chlorophenol from their single and bisolute aqueous solutions on Amberlite XAD-16 resin, J. Hazard. Mater., 105 (2003) 143–156.
  32. S. Mondal, K. Aikat, G. Halder, Optimization of ranitidine hydrochloride removal from simulated pharmaceutical waste by activated charcoal from mung bean husk using response surface methodology and artificial neural network, Desal. Wat. Treat., 57 (2016) 18366–18378.
  33. M.R. Awual, M.A. Shenashen, T. Yaita, H. Shiwaku, A. Jyo, Efficient arsenic (V) removal from water by ligand exchange fibrous adsorbent, Water Res., 46 (2012) 5541–5550.
  34. A. Gundogdu, C. uran, H. Basri Senturk, M. Soylak, D. Ozdes, H. Serencam, M. Imamoglu, Adsorption of phenol from aqueous solution on a low-cost activated carbon produced from tea industry waste: equilibrium, kinetic, and thermodynamic study, J. Chem. Eng. Data, 57 (2012) 2733–2743.
  35. C. Ling, F.-Q. Liu, C. Long, T.-P. Chen, Q.Y. Wu, A.M. Li, Synergic removal and sequential recovery of acid black 1 and copper (II) with hyper-crosslinked resin and inside mechanisms, Chem. Eng. J., 236 (2014) 323–331.
  36. J.C. Lazo-Cannata, A. Nieto-Márquez, A. Jacoby, A.L. Paredes-Doig, A. Romero, M.R. Sun-Kou, J.L. Valverde, Adsorption of phenol and nitrophenols by carbon nanospheres: effect of pH and ionic strength, Sep. Purif. Technol., 80 (2011) 217–224.
  37. M.H. Uddin, B. Nanzai, K. Okitsu, Effects of Na2SO4 or NaCl on sonochemical degradation of phenolic compounds in an aqueous solution under Ar: positive and negative effects induced by the presence of salts, Ultrason. Sonochem., 28 (2016) 144–149.