References

  1. J. Kim, M. Shin, C. Jang, S. Jung, B. Kim, Comparison of TOC and DOC distribution and the oxidation efficiency of BOD and COD in several reservoirs and rivers in the Han river system, J. Korean Soc. Water Qual., 23 (2007) 72–80.
  2. S. Lee, Y. Lee, K. Hong, S. Lee, M. Kim, J. Park, D. Seo, Comparison of BOD, COD, TOC and DOC as the indicator of organic matter pollution of agricultural surface water in Gyeongnam Province, Korean J. Soil Sci. Fert., 46 (2013) 327–332.
  3. J. Choi, D. Han, Development of Water Quality Standard for TOC as Organic Matter Index, Seoul Studies, 12 (2011) 173–184.
  4. J. Choi, Improvement of the organic matter index in water quality standards for rivers and lakes, GRI Rev., 13 (2011) 323–338.
  5. J. Byun, T. Kim, S. Lee, H. Kim, J. Kim, Comparison of oxidation methods in analyzing total organic carbon, J. Korean Soc. Environ. Anal., 12 (2009) 172–176.
  6. American Public Health Association (APHA), Standard Methods for the Examination of Water and Waste water, 21st ed., American Public Health Association, Washington, D.C., 2005.
  7. S.J. Cho, H.D. Jun, M.J. Park, S. Kim, Record breaking occurrence frequency of air temperature and precipitation, J. Korean Soc. Hazard Mitig., 11 (2011) 345–352.
  8. S. Kim, D.K. Kang, M.S. Kim, H.S. Shin, The possibility of daily flow data generation from 8-day intervals measured flow data for calibrating watershed model, J. Korean Soc. Water Qual., 23 (2007) 64–71.
  9. J.C. Kim, S. Kim, Flow curve analysis for Nakdong River basin using TMDL flow data, J. Korean Soc. Water Qual., 23 (2007) 332–338.
  10. S. Han, D.K. Kang, H.S. Shin, J. Yu, S. Kim, Improvement of suspended solid loads estimation in Nakdong River using minimum variance unbiased estimator, J. Korean Soc. Water Qual., 23 (2007) 251–259.
  11. M.S. Keem, H.S. Shin, J.H. Park, S. Kim, Empirical equation for pollutant loads delivery ratio in Nakdong River TMDL unit watersheds, J. Korean Soc. Water Qual., 25 (2009) 580–588.
  12. V.P. Singh, Ed., Computer Models of Watershed Hydrology, Vol. 1130, Water Resources Publications, Highlands Ranch, 1995, pp. 164–214.
  13. U. Kim, J.J. Kaluarachchi, Application of parameter estimation and regionalization methodologies to ungauged basins of the Upper Blue Nile River Basin, Ethiopia, J. Hydrol., 362 (2008) 39–56.
  14. U. Kim, J.J. Kaluarachchi, Climate change impacts on water resources in the Upper Blue Nile River Basin, Ethiopia, J. Am. Water Resour. Assoc., 45 (2009) 1361–1378.
  15. S. Kang, D.R. Lee, S.H. Lee, A study on calibration of tank model with soil moisture structure, J. Korean Water Resour. Assoc., 37 (2004) 133–144.
  16. S.H. Lee, S.U. Kang, A parameter regionalization study of a modified tank model using characteristic factors of watersheds, J. Korean Soc. Civ. Eng., 27 (2007) 379–385.
  17. V.T. Chow, D.R. Maidment, L.W. Mays, Applied Hydrology, McGraw-Hill, New York, 1988.
  18. C. Yoo, J. Shin, C.H. Jun, Parameter decision of Muskingum channel routing method based on the linear system assumption, J. Korean Water Resour. Assoc., 46 (2013) 449–463.
  19. P.E. Gill, W. Murrary, M.A. Saunders, SNOPT: an SQP algorithm for large-scale constrained optimization, SIAM Rev., 47 (2005) 99–131.
  20. R.I. Ferguson, River loads underestimated by rating curves, Water Resour. Res., 22 (1986) 74–76.
  21. R.W. Koch, G.M. Smillie, Bias in hydrologic prediction using log-transformed regression models, J. Am. Water Resour. Assoc., 22 (1986) 717–723.
  22. R.P. Richards, J. Holloway, Monte Carlo studies of sampling strategies for estimating tributary loads, Water Resour. Res., 23 (1987) 1939–1948.
  23. T.C. Young, J.V. DePinto, T.M. Heidtke, Factors affecting the efficiency of some estimators of fluvial total phosphorus load, J. Am. Water Resour. Assoc., 24 (1988) 1535–1540.
  24. S.E. Yochum, A Revised Load Estimation Procedure for the Susquehanna, Potomac, Patuxent, and Choptank Rivers: U.S. Geological Survey Water-Resources Investigations Report 00-4156, 2000.
  25. T.A. Cohn, D.L. Caulder, E.J. Gilroy, L.D. Zynjuk, R.M. Summers, The validity of a simple statistical model for estimating fluvial constituent loads: an empirical study involving nutrient loads entering Chesapeak Bay, Water Resour. Res., 28 (1992) 2353–2364.
  26. T.A. Cohn, Estimating contaminant loads in rivers: an application of adjusted maximum likelihood to type I censored data, Water Resour. Res., 41 (2005) W07003.1-W07003.13.
  27. S. Kumar, A. Godrej, T.J. Grizzard, Watershed size effects on applicability of regression-based methods for fluvial loads estimation, Korean Soc. Civ. Eng., 49 (2013) 7698–7710.
  28. A. Lee, D. Choi, T. Kim, S. Kim, The hydrologic flux of SS, TN and TP in Nakdong River basin, J. Korean Soc. Civ. Eng., 30 (2010) 551–560.
  29. R.L. Runkel, C.G. Crawford, T.A. Cohn, Load estimator (LOADEST): A FORTRAN Program for Estimating Constituent Loads in Streams and Rivers, No. 4-A5, U.S. Geological Survey Techniques and Methods, 2004.
  30. T.A. Chon, L.L. Delong, E.J. Gilroy, R.M. Hirsch, D.K. Wells, Estimating constituent loads, Korean Soc. Civ. Eng., 25 (1989) 937–942.
  31. D. Bradu, Y. Mundlak, Estimation in lognormal linear models, J. Am. Stat. Assoc., 65 (1970) 198–211.
  32. J.E. Nash, J.V. Sutcliffe, River Flow Forecasting through Conceptual Model. Part 1-A Discussion of Principles, J. Hydrol., 10 (1970) 282–290.