References
- H.S. Lee, W.F.J. Vermaas, B.E. Rittmann, Biological hydrogen
production: prospects and challenges, Trends Biotechnol., 28
(2010) 262–271.
- C.I. Torres, A.K. Marcus, B.E. Rittmann, Kinetics of consumption
of fermentation products by anode-respiring bacteria,
Appl. Microbiol. Biotechnol., 77 (2007) 689–697.
- S. Cheng, B.E. Logan, Ammonia treatment of carbon cloth
anodes to enhance power generation of microbial fuel cells,
Electrochem. Commun., 9 (2007) 492–496.
- L. Verea, O. Savadogo, A. Verde, J. Campos, F. Ginez, P.J. Sebastian,
Performance of a microbial electrolysis cell (MEC) for
hydrogen production with a new process for the biofilm formation,
Int. J. Hydrog. Energy, 39 (2014) 8938–8946.
- B.E. Rittman, Biofilms, active substrata, and me, Water Res.,
132 (2018) 135–145.
- M. Villano, F. Aulenta, C. Ciucci, T. Ferri, A. Giuliano M.
Majone, Bioelectrochemical reduction of CO2 to CH4 via direct
and indirect extracellular electron transfer by a hydrogenophilic
methanogenic culture, Bioresour. Technol., 101 (2010)
3085–3090.
- G. Zhu, T. Wu, A.K. Jha, R. Zou, L. Liu, X. Huang, C. Liu,
Review of bio-hydrogen production and new application in
the pollution control via microbial electrolysis cell, Desal.
Water Treat., 52 (2014) 5413–5421.
- R. Sun, D. Xing, J. Jia, Q. Liu, A. Zhou, S. Bai, N. Ren, Optimization
of high-solid waste activated sludge concentration for
hydrogen production in microbial electrolysis cells and microbial
community diversity analysis, Int. J. Hydrog. Energy, 39
(2014) 19912–19920.
- H. Omidi, A. Sathasivan, Optimal temperature for microbes in
an acetate fed microbial electrolysis cell (MEC), Int. Biodeterior.
Biodegrad., 85 (2013) 688–692.
- A. Ding, Y. Yang, G. Sun, D. Wu, Impact of applied voltage on
methane generation and microbial activities in an anaerobic
microbial electrolysis cell (MEC), Chem. Eng. J., 283 (2015)
260–265.
- A. Wang, W. Liu, N. Ren, J. Zhou, S. Cheng, Key factors affecting
microbial anode potential in a microbial electrolysis cell
for H2 production, Int. J. Hydrog. Energy, 35 (2010) 13481–13487.
- B.E. Logan, J.M. Regan, Electricity-producing bacterial communities
in microbial fuel cells, Trends Microbiol., 14 (2006)
512–518.
- S.K. Chaudhuri, D.R. Lovley, Electricity generation by direct
oxidation of glucose in mediatorless microbial fuel cells, Nat.
Biotechnol., 21 (2003) 1229–1232.
- B.E. Rittmann, P.L. McCarty, Environmental biotechnology:
principles and applications, McGraw-Hill, Boston, 2001.
- Y. Liu, Z. Liu, A. Zhang, Y. Chen, X. Wang, The role of EPS concentration
on membrane fouling control: Comparison analysis
of hybrid membrane bioreactor and conventional membrane
bioreactor, Desalination, 305 (2012) 38–43.
- J.Y. Nam, H.W. Kim, K.H. Lim, S.S. Hang, Electricity generation
from mfcs using differently grown anode-attached bacteria,
Environ. Eng. Res., 15 (2010) 71–78.
- D. Call, B.E. Logan, Hydrogen production in a single chamber
microbial electrolysis cell lacking a membrane, Environ. Sci.
Technol., 42 (2008) 3401–3406.
- X. Pan, J. Liu, D. Zhang, X. Chen, L. Li, W. Song, J. Yang, A comparison
of five extraction methods for extracellular polymeric
substances (EPS) from biofilm by using three-dimensional
excitation-emission matrix (3DEEM) fluorescence spectroscopy,
Water SA, 36 (2010) 111–116.
- J.L. Brunelle, R. Green, Coomassie blue staining, Methods
Enzymol., 541 (2014) 161–167.
- J. Zeng, J. Gao, Y. Chen, P. Yan, Y. Dong, Y. Shen, J. Guo, N.
Zeng, P. Zhang, Composition and aggregation of extracellular
polymeric substances (EPS) in hyperhaline and municipal
wastewater treatment plants, Sci. Rep., 6 (2016) 26721–26729.
- J. Huo, Q. Li, Determination of thiamazole in pharmaceutical
samples by phosphorus molybdenum blue spectrophotometry,
Spectroc. Acta Pt. A-Molec. Biomolec. Spectr., 87 (2012)
293–297.
- N. Yang, H. Hafez, G. Nakhla, Impact of volatile fatty acids
on microbial electrolysis cell performance, Bioresour. Technol.,
193 (2015) 449–455.
- Y. Wang, L. Dong, Y. Zuo, T. Xu, Z. Ru, Improving hydrogen
production from straw though simultaneous fermentation by
applied voltage in microbial electrolysis cell, Trends Parasitol.,
32 (2016) 234–239.
- S.K. Chaudhuri, D.R. Lovley, Electricity generation by direct
oxidation glucose in mediatorless microbial fuel cells, Nat. Biotechnol.,
21 (2003) 1229–1232.
- S. Freguia, K. Rabaey, Z. Yuan, Syntrophic processes drive the
conversion of glucose in microbial fuel cell anodes, Environ.
Sci. Technol., 42 (2008) 7937–7943.
- J. Hou, Z. Liang, Y. Li, Y. Zhou, Charge and mass transfer
impedance through different growth phases of anode-respiring
biofilm, Sci. Bull., 61 (2016) 3616–3622.
- E. Marsili, J.B. Rollefson, D.B. Baron, R.M. Hozalski, D.R. Bond,
Microbial biofilm volt ammetry: direct electrochemical characterization
of catalytic electrode-attached biofilms, Appl.
Environ. Microbiol., 74 (2008) 7329–7337.
- S.A. Patil, S. Gildemyn, D. Pant, K. Zengler, B.E. Logan, K.
Rabaey, A logical data representation framework for electricity-driven bioproduction processes, Biotechnol. Adv., 33 (2015)
736–744.
- A. Valle, E. Zanardini, P. Abbruscato, P. Argenzio, G. Lustrato,
G. Ranalli, C. Sorlini, Effects of low electric current (LEC)
treatment on pure bacterial cultures, J. Appl. Microbiol., 103
(2007) 1376–1385.
- L. Loghavi, S.K. Sastry, A.E. Yousef, Effect of moderate electric
field frequency and growth stage on the cell membrane permeability
of Lactobacillus acidophilus, Biotechnol. Prog., 25
(2009) 85–94.
- S. Min, G.A. Evrendilek, H.Q. Zhang, Pulsed Electric fields:
processing system, microbial and enzyme inhibition, and
shelf life extension of foods, IEEE Trans. Plasma Sci., 35 (2007)
59–73.
- B. Vu, M. Chen, R.J. Crawford, E.P. Ivanova, Bacterial extracellular
polysaccharides involved in biofilm formation, Molecules,
14 (2009) 2535–2554.
- L. Zhang, X. Zhu, J. Li, Q. Liao, D. Ye, Biofilm formation and
electricity generation of a microbial fuel cell started up under
different external resistances, J. Power Sources, 196 (2011)
6029–6035.
- G. Reguera, K.D. McCarthy, T. Mehta, J.S. Nicoll, M.T. Tuominen,
D.R. Lovley, extracellular electron transfer via microbial
nanowires, Nature, 435 (2005) 1098–1101.
- X.F. Sun, S.G. Wang, X.M. Zhang, J.P. Chen, X.M. Li, B.Y. Gao,
Y. Ma, Spectroscopic study of Zn2+ and Co2+ binding to extracellular
polymeric substances (EPS) from aerobic granules, J.
Colloid Interface Sci., 335 (2009) 11–17.
- C. Xu, S. Zhang, C.Y. Chuang, E.J. Miller, K.A. Schwehr, P.H.
Santschi, Chemical composition and relative hydrophobicity
of microbial exopolymeric substances (EPS) isolated by anion
exchange chromatography and their actinide-binding affinities,
Mar. Chem., 126 (2011) 27–36.
- T. Maruyama, S. Katoh, M. Nakajima, H. Nabetani, T.P. Abbott,
A. Shono, K. Satoh, FT-IR analysis of BSA fouled on ultrafiltration
and microfiltration membranes, J. Membr. Sci., 192 (2001)
201–207.
- A. Omoike, J. Chorover, Spectroscopic study of extracellular
polymeric substances from bacillus subtilis: aqueous chemistry
and adsorption effects, Biomacromolecules, 5 (2004) 1219–1230.
- S. Comte, G. Guibaud, M. Baudu, Relations between extraction
protocols for activated sludge extracellular polymeric substances
(EPS) and EPS complexation properties Part I. Comparison
of the efficiency of eight EPS extraction methods,
Enzyme Microb. Technol., 38 (2006) 237–245.