References

  1. H.S. Lee, W.F.J. Vermaas, B.E. Rittmann, Biological hydrogen production: prospects and challenges, Trends Biotechnol., 28 (2010) 262–271.
  2. C.I. Torres, A.K. Marcus, B.E. Rittmann, Kinetics of consumption of fermentation products by anode-respiring bacteria, Appl. Microbiol. Biotechnol., 77 (2007) 689–697.
  3. S. Cheng, B.E. Logan, Ammonia treatment of carbon cloth anodes to enhance power generation of microbial fuel cells, Electrochem. Commun., 9 (2007) 492–496.
  4. L. Verea, O. Savadogo, A. Verde, J. Campos, F. Ginez, P.J. Sebastian, Performance of a microbial electrolysis cell (MEC) for hydrogen production with a new process for the biofilm formation, Int. J. Hydrog. Energy, 39 (2014) 8938–8946.
  5. B.E. Rittman, Biofilms, active substrata, and me, Water Res., 132 (2018) 135–145.
  6. M. Villano, F. Aulenta, C. Ciucci, T. Ferri, A. Giuliano M. Majone, Bioelectrochemical reduction of CO2 to CH4 via direct and indirect extracellular electron transfer by a hydrogenophilic methanogenic culture, Bioresour. Technol., 101 (2010) 3085–3090.
  7. G. Zhu, T. Wu, A.K. Jha, R. Zou, L. Liu, X. Huang, C. Liu, Review of bio-hydrogen production and new application in the pollution control via microbial electrolysis cell, Desal. Water Treat., 52 (2014) 5413–5421.
  8. R. Sun, D. Xing, J. Jia, Q. Liu, A. Zhou, S. Bai, N. Ren, Optimization of high-solid waste activated sludge concentration for hydrogen production in microbial electrolysis cells and microbial community diversity analysis, Int. J. Hydrog. Energy, 39 (2014) 19912–19920.
  9. H. Omidi, A. Sathasivan, Optimal temperature for microbes in an acetate fed microbial electrolysis cell (MEC), Int. Biodeterior. Biodegrad., 85 (2013) 688–692.
  10. A. Ding, Y. Yang, G. Sun, D. Wu, Impact of applied voltage on methane generation and microbial activities in an anaerobic microbial electrolysis cell (MEC), Chem. Eng. J., 283 (2015) 260–265.
  11. A. Wang, W. Liu, N. Ren, J. Zhou, S. Cheng, Key factors affecting microbial anode potential in a microbial electrolysis cell for H2 production, Int. J. Hydrog. Energy, 35 (2010) 13481–13487.
  12. B.E. Logan, J.M. Regan, Electricity-producing bacterial communities in microbial fuel cells, Trends Microbiol., 14 (2006) 512–518.
  13. S.K. Chaudhuri, D.R. Lovley, Electricity generation by direct oxidation of glucose in mediatorless microbial fuel cells, Nat. Biotechnol., 21 (2003) 1229–1232.
  14. B.E. Rittmann, P.L. McCarty, Environmental biotechnology: principles and applications, McGraw-Hill, Boston, 2001.
  15. Y. Liu, Z. Liu, A. Zhang, Y. Chen, X. Wang, The role of EPS concentration on membrane fouling control: Comparison analysis of hybrid membrane bioreactor and conventional membrane bioreactor, Desalination, 305 (2012) 38–43.
  16. J.Y. Nam, H.W. Kim, K.H. Lim, S.S. Hang, Electricity generation from mfcs using differently grown anode-attached bacteria, Environ. Eng. Res., 15 (2010) 71–78.
  17. D. Call, B.E. Logan, Hydrogen production in a single chamber microbial electrolysis cell lacking a membrane, Environ. Sci. Technol., 42 (2008) 3401–3406.
  18. X. Pan, J. Liu, D. Zhang, X. Chen, L. Li, W. Song, J. Yang, A comparison of five extraction methods for extracellular polymeric substances (EPS) from biofilm by using three-dimensional excitation-emission matrix (3DEEM) fluorescence spectroscopy, Water SA, 36 (2010) 111–116.
  19. J.L. Brunelle, R. Green, Coomassie blue staining, Methods Enzymol., 541 (2014) 161–167.
  20. J. Zeng, J. Gao, Y. Chen, P. Yan, Y. Dong, Y. Shen, J. Guo, N. Zeng, P. Zhang, Composition and aggregation of extracellular polymeric substances (EPS) in hyperhaline and municipal wastewater treatment plants, Sci. Rep., 6 (2016) 26721–26729.
  21. J. Huo, Q. Li, Determination of thiamazole in pharmaceutical samples by phosphorus molybdenum blue spectrophotometry, Spectroc. Acta Pt. A-Molec. Biomolec. Spectr., 87 (2012) 293–297.
  22. N. Yang, H. Hafez, G. Nakhla, Impact of volatile fatty acids on microbial electrolysis cell performance, Bioresour. Technol., 193 (2015) 449–455.
  23. Y. Wang, L. Dong, Y. Zuo, T. Xu, Z. Ru, Improving hydrogen production from straw though simultaneous fermentation by applied voltage in microbial electrolysis cell, Trends Parasitol., 32 (2016) 234–239.
  24. S.K. Chaudhuri, D.R. Lovley, Electricity generation by direct oxidation glucose in mediatorless microbial fuel cells, Nat. Biotechnol., 21 (2003) 1229–1232.
  25. S. Freguia, K. Rabaey, Z. Yuan, Syntrophic processes drive the conversion of glucose in microbial fuel cell anodes, Environ. Sci. Technol., 42 (2008) 7937–7943.
  26. J. Hou, Z. Liang, Y. Li, Y. Zhou, Charge and mass transfer impedance through different growth phases of anode-respiring biofilm, Sci. Bull., 61 (2016) 3616–3622.
  27. E. Marsili, J.B. Rollefson, D.B. Baron, R.M. Hozalski, D.R. Bond, Microbial biofilm volt ammetry: direct electrochemical characterization of catalytic electrode-attached biofilms, Appl. Environ. Microbiol., 74 (2008) 7329–7337.
  28. S.A. Patil, S. Gildemyn, D. Pant, K. Zengler, B.E. Logan, K. Rabaey, A logical data representation framework for electricity-driven bioproduction processes, Biotechnol. Adv., 33 (2015) 736–744.
  29. A. Valle, E. Zanardini, P. Abbruscato, P. Argenzio, G. Lustrato, G. Ranalli, C. Sorlini, Effects of low electric current (LEC) treatment on pure bacterial cultures, J. Appl. Microbiol., 103 (2007) 1376–1385.
  30. L. Loghavi, S.K. Sastry, A.E. Yousef, Effect of moderate electric field frequency and growth stage on the cell membrane permeability of Lactobacillus acidophilus, Biotechnol. Prog., 25 (2009) 85–94.
  31. S. Min, G.A. Evrendilek, H.Q. Zhang, Pulsed Electric fields: processing system, microbial and enzyme inhibition, and shelf life extension of foods, IEEE Trans. Plasma Sci., 35 (2007) 59–73.
  32. B. Vu, M. Chen, R.J. Crawford, E.P. Ivanova, Bacterial extracellular polysaccharides involved in biofilm formation, Molecules, 14 (2009) 2535–2554.
  33. L. Zhang, X. Zhu, J. Li, Q. Liao, D. Ye, Biofilm formation and electricity generation of a microbial fuel cell started up under different external resistances, J. Power Sources, 196 (2011) 6029–6035.
  34. G. Reguera, K.D. McCarthy, T. Mehta, J.S. Nicoll, M.T. Tuominen, D.R. Lovley, extracellular electron transfer via microbial nanowires, Nature, 435 (2005) 1098–1101.
  35. X.F. Sun, S.G. Wang, X.M. Zhang, J.P. Chen, X.M. Li, B.Y. Gao, Y. Ma, Spectroscopic study of Zn2+ and Co2+ binding to extracellular polymeric substances (EPS) from aerobic granules, J. Colloid Interface Sci., 335 (2009) 11–17.
  36. C. Xu, S. Zhang, C.Y. Chuang, E.J. Miller, K.A. Schwehr, P.H. Santschi, Chemical composition and relative hydrophobicity of microbial exopolymeric substances (EPS) isolated by anion exchange chromatography and their actinide-binding affinities, Mar. Chem., 126 (2011) 27–36.
  37. T. Maruyama, S. Katoh, M. Nakajima, H. Nabetani, T.P. Abbott, A. Shono, K. Satoh, FT-IR analysis of BSA fouled on ultrafiltration and microfiltration membranes, J. Membr. Sci., 192 (2001) 201–207.
  38. A. Omoike, J. Chorover, Spectroscopic study of extracellular polymeric substances from bacillus subtilis: aqueous chemistry and adsorption effects, Biomacromolecules, 5 (2004) 1219–1230.
  39. S. Comte, G. Guibaud, M. Baudu, Relations between extraction protocols for activated sludge extracellular polymeric substances (EPS) and EPS complexation properties Part I. Comparison of the efficiency of eight EPS extraction methods, Enzyme Microb. Technol., 38 (2006) 237–245.