References

  1. P.L. McCarty, J. Bae, J. Kim, Domestic wastewater treatment as a net energy producer–can this be achieved? Environ. Sci. Technol., 45 (2011) 7100–7106.
  2. H. Liu, B.E. Logan, Electricity generation using an air-cathode single chamber microbial fuel cell in the presence and absence of a proton exchange membrane, Environ. Sci. Technol., 38 (2004) 4040–4046.
  3. J.C. Biffinger, R. Ray, B.J. Little, L.A. Fitzgerald, M. Ribbens, S.E. Finkel, B.R. Ringeisen, Simultaneous analysis of physiological and electrical output changes in an operating microbial fuel cell with Shewanella oneidensis, Biotechnol. Bioeng., 103 (2009) 524–531.
  4. C. Feng, S.C. D.Sharma, C.-P. Yu, In Biotechnologies and Biomimetics for Civil Engineering, Chapter 18 Microbial Fuel Cells for Wastewater Treatment, Springer International Publishing, 2015, pp. 411–437.
  5. I. Gajda, J. Greenman, C. Melhuish, C. Santoro, B. Li, P. Cristiani, I. Ieropoulos, Electro-osmotic-based catholyte production by microbial fuel cells for carbon capture, Water Res., 86 (2015) 108–115.
  6. I. Gajda, J. Greenman, C. Melhuish, I.A. Ieropoulos, Electricity and disinfectant production from wastewater: Microbial fuel cell as a self-powered electrolyser, Sci. Rep., 6 (2016) 25571.
  7. C.H. Feng, F.B. Li, H.J. Mai, X.Z. Li, Bio-electro-Fenton process driven by microbial fuel cell for wastewater treatment, Environ. Sci. Technol., 44 (2010) 1875–1880.
  8. Y. Wang, C. Feng, Y. Li, J. Gao , C.P. Yu, Enhancement of emerging contaminants removal using Fenton reaction driven by H2O2-producing microbial fuel cells, Chem. Eng. J., 307 (2017) 679–686.
  9. M. Umar, H.A. Aziz, M.S. Yusoff, Trends in the use of Fenton, electro-Fenton and photo-Fenton for the treatment of landfill leachate, Waste Manage., 30 (2010) 2113–2121.
  10. L. Fu, S.J. You, F.L. Yan, M.M. Gao, X.H. Fang, G.Q. Zhang, Synthesis of hydrogen peroxide in microbial fuel cell, J. Chem. Technol. Biotechnol., 85 (2010) 715–719.
  11. E. Rosales, M. Pazos, M.A. Longo, M.A. Sanromán, Electro-Fenton decoloration of dyes in a continuous reactor: a promising technology in colored wastewater treatment, Chem. Eng. J., 155 (2009) 62–67.
  12. U. Kurt, O. Apaydin, M.T. Gonullu, Reduction of COD in wastewater from an organized tannery industrial region by Electro-Fenton process, J. Hazard. Mater., 143 (2007) 33–40.
  13. P.V. Nidheesh, R. Gandhimathi, Trends in electro-Fenton process for water and wastewater treatment: an overview, Desalination, 299 (2012) 1–15.
  14. W. Liu, Z. Ai, L. Zhang, Design of a neutral three-dimensional electro-Fenton system with foam nickel as particle electrodes for wastewater treatment, J. Hazard. Mater., 243 (2012) 257–264.
  15. X. Zhang, L. Lei, B. Xia, Y. Zhang, J. Fu, Oxidization of carbon nanotubes through hydroxyl radical induced by pulsed O2 plasma and its application for O2 reduction in electro-Fenton, Electrochim. Acta, 54 (2009) 2810–2817.
  16. Y.H. Lin, T.Y. Wei, H.C. Chien, S.Y. Lu, Manganese oxide/carbon aerogel composite: an outstanding supercapacitor electrode material, Adv. Energy Mater., 1 (2011) 901–907.
  17. F.C. Wu, R.L. Tseng, C.C. Hu, C.C. Wang, Physical and electrochemical characterization of activated carbons prepared from firwoods for supercapacitors, J. Power Sources, 138 (2004) 351–359.
  18. M. Behera, P.S. Jana, M.M. Ghangrekar, Performance evaluation of low cost microbial fuel cell fabricated using earthen pot with biotic and abiotic cathode, Bioresource Technol., 101 (2010) 1183–1189.
  19. T. Fromherz, C. Mendoza, F. Ruette, Chemisorption of atomic H, C, N and O on a cluster-model graphite surface, Mon. Not. R. Astron. Soc., 263 (1993) 851–860.
  20. E.S. Bobkova, T.G. Shikova, V.I. Grinevich, V.V. Rybkin, Mechanism of hydrogen peroxide formation in electrolytic-cathode atmospheric-pressure direct-current discharge, High Energy Chem., 46 (2012) 56–59.
  21. T. Jacob, The mechanism of forming H2O from H2 and O2 over a Pt catalyst via direct oxygen reduction, Fuel Cells, 6 (2006) 159–181.
  22. C. Gao, L. Liu, T. Yu, F. Yang, Development of a novel carbon-based conductive membrane with in-situ formed MnO2 catalyst for wastewater treatment in bio-electrochemical system (BES), J. Membr. Sci., 549 (2018) 533–542.
  23. A. Kozawa, R.A. Powers, The manganese dioxide electrode in alkaline electrolyte; the electron-proton mechanism for the discharge process from MnO2 to MnO1.5, J. Electrochem. Soc., 113 (1966) 870–878.