References
- P.L. McCarty, J. Bae, J. Kim, Domestic wastewater treatment
as a net energy producer–can this be achieved? Environ. Sci.
Technol., 45 (2011) 7100–7106.
- H. Liu, B.E. Logan, Electricity generation using an air-cathode
single chamber microbial fuel cell in the presence and absence
of a proton exchange membrane, Environ. Sci. Technol., 38
(2004) 4040–4046.
- J.C. Biffinger, R. Ray, B.J. Little, L.A. Fitzgerald, M. Ribbens,
S.E. Finkel, B.R. Ringeisen, Simultaneous analysis of physiological
and electrical output changes in an operating microbial
fuel cell with Shewanella oneidensis, Biotechnol. Bioeng., 103
(2009) 524–531.
- C. Feng, S.C. D.Sharma, C.-P. Yu, In Biotechnologies and Biomimetics
for Civil Engineering, Chapter 18 Microbial Fuel
Cells for Wastewater Treatment, Springer International Publishing,
2015, pp. 411–437.
- I. Gajda, J. Greenman, C. Melhuish, C. Santoro, B. Li, P. Cristiani,
I. Ieropoulos, Electro-osmotic-based catholyte production
by microbial fuel cells for carbon capture, Water Res., 86
(2015) 108–115.
- I. Gajda, J. Greenman, C. Melhuish, I.A. Ieropoulos, Electricity
and disinfectant production from wastewater: Microbial fuel
cell as a self-powered electrolyser, Sci. Rep., 6 (2016) 25571.
- C.H. Feng, F.B. Li, H.J. Mai, X.Z. Li, Bio-electro-Fenton process
driven by microbial fuel cell for wastewater treatment, Environ.
Sci. Technol., 44 (2010) 1875–1880.
- Y. Wang, C. Feng, Y. Li, J. Gao , C.P. Yu, Enhancement of emerging
contaminants removal using Fenton reaction driven by H2O2-producing
microbial fuel cells, Chem. Eng. J., 307 (2017) 679–686.
- M. Umar, H.A. Aziz, M.S. Yusoff, Trends in the use of Fenton,
electro-Fenton and photo-Fenton for the treatment of landfill
leachate, Waste Manage., 30 (2010) 2113–2121.
- L. Fu, S.J. You, F.L. Yan, M.M. Gao, X.H. Fang, G.Q. Zhang,
Synthesis of hydrogen peroxide in microbial fuel cell, J. Chem.
Technol. Biotechnol., 85 (2010) 715–719.
- E. Rosales, M. Pazos, M.A. Longo, M.A. Sanromán, Electro-Fenton
decoloration of dyes in a continuous reactor: a promising
technology in colored wastewater treatment, Chem. Eng. J., 155
(2009) 62–67.
- U. Kurt, O. Apaydin, M.T. Gonullu, Reduction of COD in
wastewater from an organized tannery industrial region by
Electro-Fenton process, J. Hazard. Mater., 143 (2007) 33–40.
- P.V. Nidheesh, R. Gandhimathi, Trends in electro-Fenton process
for water and wastewater treatment: an overview, Desalination,
299 (2012) 1–15.
- W. Liu, Z. Ai, L. Zhang, Design of a neutral three-dimensional
electro-Fenton system with foam nickel as particle electrodes
for wastewater treatment, J. Hazard. Mater., 243 (2012) 257–264.
- X. Zhang, L. Lei, B. Xia, Y. Zhang, J. Fu, Oxidization of carbon
nanotubes through hydroxyl radical induced by pulsed
O2 plasma and its application for O2 reduction in electro-Fenton,
Electrochim. Acta, 54 (2009) 2810–2817.
- Y.H. Lin, T.Y. Wei, H.C. Chien, S.Y. Lu, Manganese oxide/carbon
aerogel composite: an outstanding supercapacitor electrode
material, Adv. Energy Mater., 1 (2011) 901–907.
- F.C. Wu, R.L. Tseng, C.C. Hu, C.C. Wang, Physical and electrochemical
characterization of activated carbons prepared from firwoods
for supercapacitors, J. Power Sources, 138 (2004) 351–359.
- M. Behera, P.S. Jana, M.M. Ghangrekar, Performance evaluation
of low cost microbial fuel cell fabricated using earthen
pot with biotic and abiotic cathode, Bioresource Technol., 101
(2010) 1183–1189.
- T. Fromherz, C. Mendoza, F. Ruette, Chemisorption of atomic
H, C, N and O on a cluster-model graphite surface, Mon. Not.
R. Astron. Soc., 263 (1993) 851–860.
- E.S. Bobkova, T.G. Shikova, V.I. Grinevich, V.V. Rybkin, Mechanism
of hydrogen peroxide formation in electrolytic-cathode
atmospheric-pressure direct-current discharge, High Energy
Chem., 46 (2012) 56–59.
- T. Jacob, The mechanism of forming H2O from H2 and O2 over
a Pt catalyst via direct oxygen reduction, Fuel Cells, 6 (2006)
159–181.
- C. Gao, L. Liu, T. Yu, F. Yang, Development of a novel carbon-based conductive membrane with in-situ formed MnO2
catalyst for wastewater treatment in bio-electrochemical system
(BES), J. Membr. Sci., 549 (2018) 533–542.
- A. Kozawa, R.A. Powers, The manganese dioxide electrode
in alkaline electrolyte; the electron-proton mechanism for
the discharge process from MnO2 to MnO1.5, J. Electrochem.
Soc., 113 (1966) 870–878.