References

  1. M. Bayramoglu, M. Kobya, O.T. Can, M. Sozbir, Operating cost analysis of electrocoagulation of textile dye wastewater, Separ. Purif. Technol., 37 (2004) 117–125.
  2. P.C. Vandevivere, R. Bianchi, W. Verstraete, Treatment and reuse of wastewater from the textile wet-processing industry: review of emerging technologies, Cheminform, 29 (1998).
  3. B. Manu, S. Chaudhari, Anaerobic decolorisation of simulated textile wastewater containing azo dyes, Bioresour. Technol., 82 (2002) 225–231.
  4. D.M. Mccartney, J.A. Oleszkiewicz, Sulfide inhibition of anaerobic degradation of lactate and acetate, Water Res., 25 (1991) 203–209.
  5. Y. Gao, Anaerobic digestion of high strength wastewaters containing high levels of sulphate: University of Newcastle upon Tyne; 1989.
  6. C.H. Wei, W.X. Wang, Z.Y. Deng, C.F. Wu, Characteristics of high-sulfate wastewater treatment by two-phase anaerobic digestion process with Jet-loop anaerobic fluidized bed, J. Environ. Sci., 19 (2007) 264–270.
  7. H. Rismaniyazdi, A.D. Christy, S.M. Carver, Z.T. Yu, B.A. Dehority, O.H. Tuovinen, A. Pandey, D.J. Lee, B.E. Logan, Effect of external resistance on bacterial diversity and metabolism in cellulose-fed microbial fuel cells, Bioresour. Technol., 102 (2011) 278–283.
  8. J. Sun, Z. Bi, B. Hou, Y.Q. Cao, Y.Y. Hu, Further treatment of decolorization liquid of azo dye coupled with increased power production using microbial fuel cell equipped with an aerobic biocathode, Water Res., 45 (2011) 283–291.
  9. Y.-N. Liu, F. Zhang, J. Li, D.-B. Li, D.-F. Liu, W.-W. Li, H.-Q. Yu, Exclusive extracellular bioreduction of methyl orange by azo reductase-free Geobacter sulfur reducens, Environ. Sci. Technol., 51 (2017) 8616–8623.
  10. P.-J. Cai, X. Xiao, Y.-R. He, W.-W. Li, J. Chu, C. Wu, M.-X. He, Z. Zhang, G.-P. Sheng, M.H.-W. Lam, Anaerobic biodecolorization mechanism of methyl orange by Shewanella oneidensis MR-1, Appl. Microbiol. Biotechnol., 93 (2012) 1769–1776.
  11. X. Long, Q. Pan, C. Wang, W. Hui, L. Hua, X. Li, Microbial fuel cell-photoelectrocatalytic cell combined system for the removal of azo dye wastewater, Bioresour. Technol., 244 (2017) 182–191.
  12. X. Long, H. Wang, C. Wang, X. Cao, X. Li, Enhancement of azo dye degradation and power generation in a photoelectrocatalytic microbial fuel cell by simple cathodic reduction on titania nanotube arrays electrode, J. Power Sources, 415 (2019) 145–153.
  13. D.-J. Lee, C.-Y. Lee, J.-S. Chang, Q. Liao, A. Su, Treatment of sulfate/sulfide-containing wastewaters using a microbial fuel cell: single and two-anode systems, Int. J. Green Energy, 12 (2014) 998–1004.
  14. E.S. Yoo, J. Libra, U. Wiesmann, Reduction of azo dyes by desulfovibrio desulfuricans, Water Sci. Technol., 41 (2000) 15.
  15. Y. Li, A. Lu, H. Ding, X. Wang, C. Wang, C. Zeng, Y. Yan, Microbial fuel cells using natural pyrrhotite as the cathodic heterogeneous Fenton catalyst towards the degradation of biorefractory organics in landfill leachate, Electrochem. Commun., 12 (2010) 944–947.
  16. X. Xu, C. Chen, A. Wang, W. Guo, X. Zhou, D.J. Lee, N. Ren, J.S. Chang, Simultaneous removal of sulfide, nitrate and acetate under denitrifying sulfide removal condition: modeling and experimental validation, J. Hazard. Mater., 264 (2014) 16–24.
  17. Y. Du, Y. Qu, X. Zhou, Y. Feng, Electricity generation by biocathode coupled photoelectrochemical cells, RSC Adv., 5 (2015) 25325–25328.
  18. W. Haynes, Student’s t-Test. Encyclopedia of Systems Biology: Springer; 2013, p. 2023–2025.
  19. X. Ying, D. Shen, M. Wang, H. Feng, Y. Gu, W. Chen, Titanium dioxide thin film-modified stainless steel mesh for enhanced current-generation in microbial fuel cells, Chem. Eng. J., 333 (2018) 260–267.
  20. X.J. Xu, C. Chen, A.J. Wang, B.J. Ni, W.Q. Guo, Y. Yuan, C. Huang, X. Zhou, D.H. Wu, D.J. Lee, N.Q. Ren, Mathematical modeling of simultaneous carbon-nitrogen-sulfur removal from industrial wastewater, J. Hazard. Mater., 321 (2017) 371–381.
  21. S. Ou, H. Kashima, D.S. Aaron, J.M. Regan, M.M. Mench, Full cell simulation and the evaluation of the buffer system on air-cathode microbial fuel cell, J. Power Sources, 347 (2017) 159–169.
  22. Z.Z. Ismail, A.A. Habeeb, Experimental and modeling study of simultaneous power generation and pharmaceutical wastewater treatment in microbial fuel cell based on mobilized biofilm bearers, Renew. Energy, 101 (2017) 1256–1265.
  23. M. Esfandyari, M.A. Fanaei, R. Gheshlaghi, M.A. Mahdavi, Mathematical modeling of two-chamber batch microbial fuel cell with pure culture of Shewanella, Chem. Eng. Res. Design, 117 (2017) 34–42.
  24. O.J. Hao, J.M. Chen, L. Huang, R.L. Buglass, Sulfate-reducing bacteria, Handbook of Water & Wastewater Microbiol., 26 (2003) 459–469.
  25. C. Ma, S. Zhou, L. Zhuang, C. Wu, Electron transfer mechanism of extracellular respiration: A review, Acta Ecologica Sinica., 31 (2011) 2008–2018.
  26. T. Li, Z. Fang, R. Yu, X. Cao, H. Song, X. Li, The performance of the microbial fuel cell-coupled constructed wetland system and the influence of the anode bacterial community, Environ. Technol., 37 (2016) 1683–1692.
  27. S. Moosa, M. Nemati, S.T.L. Harrison, A kinetic study on anaerobic reduction of sulphate, Part I: Effect of sulphate concentration, Chem. Eng. Sci., 57 (2002) 2773–2780.
  28. P.K. Dutta, K. Rabaey, Z. Yuan, J. Keller, Spontaneous electrochemical removal of aqueous sulfide, Water Res., 42 (2008) 4965–4975.
  29. F. Zhao, N. Rahunen, J.R. Varcoe, A.J. Roberts, C. Avignone-Rossa, A.E. Thumser, R.C. Slade, Factors affecting the performance of microbial fuel cells for sulfur pollutants removal, Biosens. Bioelectron., 24 (2009) 1931–1936.
  30. X. Xu, C. Chen, D.J. Lee, A. Wang, W. Guo, X. Zhou, H. Guo, Y. Yuan, N. Ren, J.S. Chang, Sulfate-reduction, sulfide-oxidation and elemental sulfur bioreduction process: modeling and experimental validation, Bioresour. Technol., 147 (2013) 202–211.
  31. E.S. Yoo, J. Libra, L. Adrian, Mechanism of decolorization of azo dyes in anaerobic mixed culture, J. Environ. Eng., 127 (2001) 844–849.
  32. J.M. Morris, S. Jin, B. Crimi, A. Pruden, Microbial fuel cell in enhancing anaerobic biodegradation of diesel, Chem. Eng. J., 146 (2009) 161–167.
  33. D.J. Lee, X. Liu, H.L. Weng, Sulfate and organic carbon removal by microbial fuel cell with sulfate-reducing bacteria and sulfide-oxidising bacteria anodic biofilm, Bioresour. Technol., 156 (2014) 14–19.
  34. B.J. Ni, F. Fang, W.M. Xie, M. Sun, G.P. Sheng, W.H. Li, H.Q. Yu, Characterization of extracellular polymeric substances produced by mixed microorganisms in activated sludge with gel-permeating chromatography, excitation–emission matrix fluorescence spectroscopy measurement and kinetic modeling, Water Res., 43 (2009) 1350–1358.
  35. J. Odom, H. Peck Jr, Hydrogen cycling as a general mechanism for energy coupling in the sulfate-reducing bacteria, Desulfovibrio sp, FEMS Microbiol. Lett., 12 (1981) 47–50.
  36. L. Jabari, H. Gannoun, J.-L. Cayol, A. Hedi, M. Sakamoto, E. Falsen, M. Ohkuma, M. Hamdi, G. Fauque, B. Ollivier, Macellibacteroides fermentans gen. nov., sp. nov., a member of the family Porphyromonadaceae isolated from an upflow anaerobic filter treating abattoir wastewaters, Int. J. Syst. Evol. Microbiol., 62 (2012) 2522–2527.
  37. H.J. Laanbroek, H.J. Geerligs, A.A. Peijnenburg, J. Siesling, Competition for L-lactate between Desulfovibrio, Veillonella, and Acetobacterium species isolated from anaerobic intertidal sediments, Microb. Ecol., 9 (1983) 341–354.
  38. H. Yi, K.P. Nevin, B.-C. Kim, A.E. Franks, A. Klimes, L.M. Tender, D.R. Lovley, Selection of a variant of Geobacter sulfurreducens with enhanced capacity for current production in microbial fuel cells, Biosens. Bioelectron., 24 (2009) 3498–3503.