References
- B.J. Alloway, D.C. Ayres, Chemical Principles of Environmental
Pollution. Chapman and Hall, Oxford, 1981.
- R.E. Ikyereve, Investigations into the pretreatment methods
for the removal of nickel(II) and vanadium (IV) from crude oil.
PhD Thesis, Loughborough University, Loughborough, 2014.
- R.M. Barrer, Zeolites and their synthesis, Zeolites, 1 (1981) 130–140.
- J.B. Nagy, P. Bodart, I. Hannus, I. Kiricsi, Synthesis, characterization
and use of zeolitic microporous materials. DecaGen
Publishers Ltd, Szeged, Hungary, 1998.
- A. Dyer, An introduction to zeolite molecular sieves. Bath
Press Ltd, Bath, 1988.
- R. Szostak, Molecular sieves, principles of synthesis and identification.
Van Nostrand, Reinhold, New York, 1989.
- F.A. Mumpton, L.B. Sand, A new industrial mineral commodity;
natural zeolites: occurrence, properties, use. Pergamon
Press, New York, USA, 1978.
- D.W. Breck, Zeolite molecular sieves, structure, chemistry and
use. Wiley, New York, USA, 1974.
- H. Van Bekkum, E.M. Flanigen, P.A. Jacobs, J.C. Jansen, Introduction
to zeolite science and practice, studies in surface science
and catalysis, Elsevier Science, Amsterdam, 2001.
- M.I. Occelli, H. Kessler, Synthesis of porous materials: zeolites,
clays and nanostructures. CRC Press, New York, 1997.
- E. Erdem N. Karapinar, R. Donat, The removal of heavy metal
cations by natural zeolites, J. Coll. Inter. Sci., 280 (2004) 309–314.
- P.W. Schindler, B. Furst, R. Dick, P.U. Wolf, Ligand properties
of surface silanol group. I. surface complex formation with
Fe2+, Cu2+ and Pb2+, J. Coll. Inter. Sci., 55 (1976) 469–475.
- S.M. Evangelista, E. DeOliveira, G.R. Castro, L.F. Zara, A.G.S.
Prado, Hexagonal mesoporous silica modified with 2-mercaptothiazoline
for removing mercury from water solution, Surf.
Sci., 601 (2007) 2194–2202.
- Y. Jiang, Q. Gao, H. Yu, Y. Chen, F. Deng, Intensively competitive
adsorption for heavy metal ions by PAMAM-SBA-15 and
EDTA-PAMAM-SBA-15 inorganic-organic hybrid materials,
Micropor. Mesopor. Mater., 103 (2007) 316–324.
- R.M. Barrer, Zeolites and clay minerals as sorbents and molecular
sieves. Academic Press, FRS, London, 1989.
- F. Helffrich, Ion-exchange, Dower Publications, New York, NY,
1995, pp. 63–66.
- M. Addy, B. Losey, R. Mohseni, E. Zlotnikov, A. Vasiliev,
Adsorption of heavy metal ions on mesoporous silica-modified
montmorilonite containing a grafted chelate ligand,
Applied Clay Sci., 59–60 (2012) 115–120.
- P. Tzvetkova, R. Nickolov, Modified and unmodified silica gel
used for heavy metal ions removal from aqueous solution, J.
Chem. Technol. Metall., 47(5) (2012) 498–504.
- Z. Hu, X. Zhang, D. Zhang, JX Wang, Adsorption of Cu2+ on
amine functionalized mesoporous silica bracket, J. Water Air
Soil Pollut., 223 (2012) 2743–2749.
[
- O. Karnitz Junior, L.V.A. Gurgel, R.P. de Freitas, L.F. Gil,
Adsorption of Cu2+, Cd2+ and Pb2+ from aqueous single metal
solutions by mercerized cellulose and mercerized sugarcane
bagasse chemically modified with EDTA dianhydride
(EDTAD)., J. Carbohydr. Polym., 77 (2009) 643–650.
- R. Guilet, N. Chiron, E. Deydier, Adsorption of Cu(II) and Pb
(II) onto a grafted silica: Isotherms and kinetic models, J. Water
Res., 37 (2003) 3079–3086.
- I. Hatay, R. Gup, M. Ersoz, Silica gel functionalized with 4-phenylacetophenone
4-aminobenzyolhydrazone: Synthesis of a
new chelating matrix and its application as metal ion collector,
J. Hazard. Mater., 150 (2008) 546–553.
- A.N. Vasiliev, L.V. Golovko, V.V. Trachevsky, G.S. Hall, J.G. Khinast,
Adsorption of heavy metal cations by organic ligands
grafted on porous materials, Micropor. Mesopor. Mater., 118
(2009) 251–257.
- M. Alkan, G. Tekin, H. Namli, FTIR and zeta potential measurements
of sepiolite treated with some organosalines, J.
Micropor. Mesopor. Mater., 84 (2005) 75–83.
- D.M. Ginter, A.T. Bell, C.J. Radke, Zeolites in synthesis of
microporous materials, Molecular Sieves. M.L Occelli, H.E
Robson (eds.), Van Nostrand Reinhold, New York, 1992, Chapter
1, p. 6–13.
- S. Mitchell, A. Bonilla, J. Pérez-Ramírez, Preparation of organic-functionalized mesoporous ZSM-5 zeolites by consecutive
desilication and silanization, Mater. Chem. Phys., 127 (2011)
278–284.
- M.A. Keane, The Removal of copper and nickel from aqueous
solution using Y zeolite ion-exchangers, Colloids Surf. A:
Physicochem. Eng. Aspects, 138 (1998) 11–19.
- W. Mozgawa, The Influence of some heavy metal cations on
the FTIR spectra of zeolites, J. Mol. Struct., 596 (2001) 129–137.
- A.M. Mureseanu, A. Reiss, I. Stefanescu, E. David, V. Parvulescu,
G. Renard, V. Hulea, Modified SBA-15 mesoporous
silica for heavy metal ions remediation, Chemosphere, 73
(2008) 1499–1504.
- J. Aguado, J.M. Arsuaga, A. Arencibia, M. Lindo, V. Gascón,
Aqueous heavy metals removed by adsorption on amine functionalized
mesoporous silica, J. Hazard. Mater., 163 (2009) 213–221.
- X. Bao, Z. Yan, D. Ma, J. Zhuang, X. Liu, X. Liu, X. Han, F.
Chang, L. Xu, Z. Liu, On the acid dealumination of USY zeolite:
a solid-state NMR investigation, J. Mol. Catal. A: Chem.,
194 (2003) 153–167.
- T. Bein, R.F. Carver, R.D. Farlee, G.D. Stucky, Solid-state silicon-
29 NMR and infrared studies of mono and polyfunctional
silanes with zeolite Y surfaces, J. Am. Chem. Soc., 110 (1988)
4546–4553.
- M.A. Khadin, M.A. Al-Shafei, Solid-state NMR spectroscopy
and refinery catalysts. Research and Development Centre,
Saudi Aramco, Dhahran, 31311, Saudi Arabia.
- A.P.M. Alves, M.G. Fonseca, A.F. Wanderley, Inorganic-organic
hybrids originating from organosilane anchored onto leached
vermiculate, Mater. Res., 16 (2013) 891–897.
- X. Wang, K.S.K. Lin, J.C.C. Chan, S. Cheng, Synthesis and catalytic
application of ordered large pore aminopropyl-functionalized
SBA-15 mesoporous materials, J. Phys. Chem. B, 109
(2005) 1763–1769.
- W. Ngeontae, W. Aeungmaitrepirom, T. Tuntulani, Chemically
modified silica gel with aminothioamidoanthraquinone for
solid phase extraction and pre-concentration of Pb(II), Cu(II),
Ni(II), Co(II) and Cd(II), Talanta, 71 (2007) 1075–1082.
- P. Zong, D. Cao, S. Wang, C. He, Y. Zhao, Synthesis of Fe3O4/CD magnetic nanocomposite via low temperature plasma
technique with high enrichment of Ni(II) from aqueous solution,
J. Taiwan Inst. Chem. Eng., 70 (2017) 134–140.