References

  1. R.S. Juang,H.J. Shao, Effect of pH on competitive adsorption of Cu(II), Ni(II), and Zn(II) from water onto chitosan beads, Adsorption 8 (2002) 71.
  2. W.S.W. Ngah, A. Kamari, Y.J. Koay, Equilibrium and kinetics studies of adsorption of copper (II) on chitosan and chitosan/PVA beads, Int. J. Biol. Macromol., 34 (2004) 155–163.
  3. J.W. Patterson, Industrial wastewater treatment technology, 2nd ed., Stoneham, MA: Butterworths Publishers, (1985).
  4. C.R. Krishnamurthy, P. Vishwanathan, Toxic metals in the Indian environment. Tata Mc Graw Hill Publishing Company Limited, New Delhi, 1991, 188 p.
  5. R. Katal, H. Zare, S.O. Rastegar, P.G. Mavaddat, N. Darzi, Removal of dye and chemical oxygen demand reduction from textile industrial wastewater using hybrid bioreactors, Environ. Eng. Manag. J., 13 (2014) 43–50.
  6. S.I. Siddiqui, S.A. Chaudhry, Iron oxide and its modified forms as an adsorbent for arsenic removal: a comprehensive recent advancement, Process. Saf. Environ. Prot., 111 (2017) 592–626.
  7. S.I. Siddiqui, S.A. Chaudhry, Arsenic removal from water using nanocomposite: a review, Curr. Environ. Eng., 4 (2017) 81–102.
  8. S.H. Siddiqui, The removal of Cu2+, Ni2+ and methylene blue (MB) from aqueous solution using Luffa Actangula carbon: kinetics, thermodynamic and isotherm and response methodology, Groundwater Sustain. Dev., 6 (2018) 141–149.
  9. S.I. Siddiqui, S.A. Chaudhry, S.U. Islam, Green adsorbents from plant sources for the removal of arsenic: an emerging wastewater treatment technology, in: S.U. Islam (Ed.), Plantbased Natural Products: Derivatives and Applications, John Wiley & Sons, Inc., 2017
  10. S.I. Siddiqui, G. Rathi, S.A. Chaudhry, Acid washed black cumin seed powder preparation for adsorption of methylene blue dye from aqueous solution: Thermodynamic, kinetic and isotherm studies, J. Molec. Liq., 264 (2018) 275–284
  11. N. Rawal, U. Jarouliya, Removal of chromium (VI) ions from wastewaters by low cost adsorbent, Res. J. Chem. Environ., 17 (2013) 43–47
  12. A.A. Alqadami, M. Naushad, Z.A. Alothman, A.A. Ghfar, Novel metal organic framework (MOF) based composite material for the sequestration of U(VI) and Th(IV) metal ions from aqueous environment RSC Adv., 6(27) (2016) 22679–22689.
  13. A.A. Alqadami, M. Naushad, M.A. Abdalla, T. Ahamad, Z. Abdullah Alothman, S.M. Alshehri, Synthesis and characterization of Fe3O4@TSC nanocomposite: highly efficient removal of toxic metal ions from aqueous medium, RSC Adv., 6 (2016) 22679−22689.
  14. H.J. Shipley, K.E. Engates, V.A. Grover, Removal of Pb(II), Cd(II), Cu(II), and Zn(II) by hematite nanoparticles: effect of sorbent concentration, pH, temperature, and exhaustion, Environ. Sci. Pollut. Res., 20 (2013) 1727–1736.
  15. M. Kremplova, D. Fialova, D. Hynek, V. Adam, R. Kizek, Utilization of the iron nanoparticles for heavy metal removal from the environment, Mendelnet, (2013) 924–928.
  16. M. Sukopova, J. Matysikova, O. Skorvan, M. Holba, Application of iron nanoparticles for industrial wastewater treatment, Nanocon, 16–18. Oct., Brno, Czech Republic, EU (2013).
  17. N. Sezgin, M. Sahin, A. Yalcin, Y. Koseoglu, Synthesis characterization and the heavy metal removal efficiency of MFe2O4 (M=Ni, Cu) Nanoparticles, Ekoloji, 22 (2013) 89–96.
  18. A.B. Seabra, P. Haddad, N. Duran, Biogenic synthesis of nanostructured iron compounds: application and perspectives, IET Nanobiotechnol., 7 (2013) 90–99.
  19. H. Katerina, S. Ivo, F. Jan, N. Maryla, T. Jiri, S. Mirka, H. Hideki, T. Jun, Z. Radek, Magnetically responsive natural biogenic iron oxides for organic xenobiotics removal, Nanocon, 16–18 Oct., Brno, Czech Republic, EU (2013).
  20. E.O. Omoregie, R.M. Couture, P.V. Cappellen, C.L. Corkhill, J.M. Charnock, D.A. Polya, D. Vaughan, K. Vanbroekhoven, J.R. Lloyd, Arsenic bioremediation by biogenic iron oxides and sulphides, Appl. Environ. Microbiol., 79 (2013) 432–4335.
  21. A.J. Williams, D.Y. Sumner, C.N. Alpers, K.M. Campbell, D.K. Nordstrom, Biogenic iron mineralization at iron mountain, ca, with implication for detection with the mars curiosity rover, 45th Lunar and Planetary Science Conference (2014).
  22. J.A. Rentz, J.L. Ullman, Copper and zinc removal using biogenic iron oxides, World Environ. Water Res. Congress: Crossing Boundaries (2012).
  23. G.M. Ayoub, H. Kalinian, Removal of low-concentration phosphorus using a fluidized raw dolomite bed, Water Env. Res., 78 (2006) 353–361.
  24. P. Cloud, Paleoecological significance of the banded iron formation, Econ. Geol., 68 (1973) 1135–1143.
  25. S.S. Goldich, Ages of Precambrian banded iron-formation, Econ. Geol., 68 (1973) 1126–1134.
  26. D. Emerson, N.P. Revsbech, Investigation of an iron-oxidizing microbial mat community located near Aarhus, Denmark: field studies, Appl. Environ. Microbiol., 60 (1994) 4022–4031.
  27. D. Emerson, C. Moyer, Isolation and characterization of novel iron-oxidizing bacteria that grow at circumneutral pH, Appl. Environ. Microbiol., 63 (1997) 4784–4792.
  28. D. Fortin, S. Langley, Formation and occurrence of biogenic iron-rich minerals, Earth-Sci. Rev., 72 (2005) 1–19.
  29. D.E. Weiss, Bacterial iron oxidation in circumneutral freshwater habitats: findings from the field and the laboratory, Geomicro. J., 21 (2004) 405–414.
  30. K.J. Edwards, W. Bach, T.M. McCollom, D.R. Rogers, Neutrophilic iron-oxidizing bacteria in the ocean: Their habitats, diversity, and roles in mineral deposition, rock alteration, and biomass production in the deep-sea, Geomicro. J., 21 (2004) 393–404.
  31. B. Kishor, N.R. Rawal, Studies on natural biogenic iron oxides for removal of copper (II) ion from aqueous solution, Desal. Water Treat., 88 (2017) 145–153.
  32. APHA, Standard methods for the examination of water and wastewater, 22nd ed. American Public Health Association, American Water Works Association, Water Environment Federation, 2012.
  33. Y.S. Al-Degs, M.A.M. Khraisheh, S.J. Allen, M.N. Ahmad, Adsorption characteristics of reactive dyes in columns of activated carbon, J. Hazard. Mater., 165 (2009) 944–949.
  34. A.A. Abia, O.B. Didi, E.D. Asuquo, Modelling of Cd(II) sorption kinetics from aqueous solution onto some Thiolated agricultural waste adsorbents, J. Appl. Sci. 6(12) (2006) 2549–2556.
  35. J.T. Nwabanne, P.K. Igbokwe, Adsorption performance of packed bed column for the removal of lead (II) using oil palm fibre, Int. J. Appl. Sci. Technol., 2(5) (2012) 148–156.
  36. K.S. Bharathi, S.P.T. Ramesh, Fixed-bed column studies on biosorption of crystal violet from aqueous solution by citrullus lanatus rind and cyperus rotundus, Appl. Water Sci., 3 (2013) 673–687.
  37. A. Saravanan, N. Uvaraja, S. Krishnan, Column study on the removal of metals from industrial effluents using the biomass Sargassum sp., Int. J. Appl. Res. Mech. Eng. (IJARME), 2(1) (2012) 135–145.
  38. B.H. Stuart, Infrared Spectroscopy: Fundamentals and Applications, Wiley, UK, 2004, 143 p.
  39. M. Naushad, T. Ahamad, G. Sharma, H. Ala’a, A.B. Albadarin, M.M. Alam, Z.A. ALOthman, S.M. Alshehri, A.A. Ghfar, Synthesis and characterization of a new starch/SnO2 nanocomposite for efficient adsorption of toxic Hg2+ metal ion, Chem. Eng. J., 300 (2016) 306−316.
  40. M. Naushad, T. Ahamad, B.M. Al-Maswari, A. Abdullah Alqadami, S.M. Alshehri, Nickel ferrite bearing nitrogen-doped mesoporous carbon as efficient adsorbent for the removal of highly toxic metal ion from aqueous medium, Chem. Eng. J., 330 (2017) 1351−1360.
  41. N.E.A. El-Gamela, L. Wortmann, K. Arroubb, S. Mathur, Surface immobilization and release of sparfloxacin drug from SiO2@Fe2O3 core-shell nanoparticles, Electro. Supple. Mater. (ESI) for chemical communications, Royal Soc. Chem., (2011).
  42. R.D. Braun, Introduction to Instrumental Analysis, McGraw-Hill, Chemistry series. 1987, pp. 378–379.
  43. M.R. Awual, G.E. Eldesoky, T. Yaita, M. Naushad, H. Shiwaku, Z.A. AlOthman, S. Suzuki, Schiff based ligand containing nano-composite adsorbent for optical copper(II) ions removal from aqueous solutions, Chem. Eng. J., 279 (2015) 639−647.
  44. N. Li, J. Ren, L. Zhao, Z.L. Wang, Fixed bed adsorption study on phosphate removal using nanosized FeOOH-modified anion resin, J. Nanomater., Hindawi Publishing Corporation, (2013) (736275) (2013) 5–13.