References
- R.S. Juang,H.J. Shao, Effect of pH on competitive adsorption
of Cu(II), Ni(II), and Zn(II) from water onto chitosan beads,
Adsorption 8 (2002) 71.
- W.S.W. Ngah, A. Kamari, Y.J. Koay, Equilibrium and kinetics
studies of adsorption of copper (II) on chitosan and chitosan/PVA beads, Int. J. Biol. Macromol., 34 (2004) 155–163.
- J.W. Patterson, Industrial wastewater treatment technology,
2nd ed., Stoneham, MA: Butterworths Publishers, (1985).
- C.R. Krishnamurthy, P. Vishwanathan, Toxic metals in the
Indian environment. Tata Mc Graw Hill Publishing Company
Limited, New Delhi, 1991, 188 p.
- R. Katal, H. Zare, S.O. Rastegar, P.G. Mavaddat, N. Darzi,
Removal of dye and chemical oxygen demand reduction from
textile industrial wastewater using hybrid bioreactors, Environ.
Eng. Manag. J., 13 (2014) 43–50.
- S.I. Siddiqui, S.A. Chaudhry, Iron oxide and its modified forms
as an adsorbent for arsenic removal: a comprehensive recent
advancement, Process. Saf. Environ. Prot., 111 (2017) 592–626.
- S.I. Siddiqui, S.A. Chaudhry, Arsenic removal from water
using nanocomposite: a review, Curr. Environ. Eng., 4 (2017)
81–102.
- S.H. Siddiqui, The removal of Cu2+, Ni2+ and methylene blue
(MB) from aqueous solution using Luffa Actangula carbon:
kinetics, thermodynamic and isotherm and response methodology,
Groundwater Sustain. Dev., 6 (2018) 141–149.
- S.I. Siddiqui, S.A. Chaudhry, S.U. Islam, Green adsorbents
from plant sources for the removal of arsenic: an emerging
wastewater treatment technology, in: S.U. Islam (Ed.), Plantbased
Natural Products: Derivatives and Applications, John
Wiley & Sons, Inc., 2017
- S.I. Siddiqui, G. Rathi, S.A. Chaudhry, Acid washed black
cumin seed powder preparation for adsorption of methylene
blue dye from aqueous solution: Thermodynamic, kinetic and
isotherm studies, J. Molec. Liq., 264 (2018) 275–284
- N. Rawal, U. Jarouliya, Removal of chromium (VI) ions from
wastewaters by low cost adsorbent, Res. J. Chem. Environ., 17
(2013) 43–47
- A.A. Alqadami, M. Naushad, Z.A. Alothman, A.A. Ghfar,
Novel metal organic framework (MOF) based composite material
for the sequestration of U(VI) and Th(IV) metal ions from
aqueous environment RSC Adv., 6(27) (2016) 22679–22689.
- A.A. Alqadami, M. Naushad, M.A. Abdalla, T. Ahamad, Z.
Abdullah Alothman, S.M. Alshehri, Synthesis and characterization
of Fe3O4@TSC nanocomposite: highly efficient removal
of toxic metal ions from aqueous medium, RSC Adv., 6 (2016)
22679−22689.
- H.J. Shipley, K.E. Engates, V.A. Grover, Removal of Pb(II),
Cd(II), Cu(II), and Zn(II) by hematite nanoparticles: effect of
sorbent concentration, pH, temperature, and exhaustion, Environ.
Sci. Pollut. Res., 20 (2013) 1727–1736.
- M. Kremplova, D. Fialova, D. Hynek, V. Adam, R. Kizek, Utilization
of the iron nanoparticles for heavy metal removal from
the environment, Mendelnet, (2013) 924–928.
- M. Sukopova, J. Matysikova, O. Skorvan, M. Holba, Application
of iron nanoparticles for industrial wastewater treatment,
Nanocon, 16–18. Oct., Brno, Czech Republic, EU (2013).
- N. Sezgin, M. Sahin, A. Yalcin, Y. Koseoglu, Synthesis characterization
and the heavy metal removal efficiency of MFe2O4
(M=Ni, Cu) Nanoparticles, Ekoloji, 22 (2013) 89–96.
- A.B. Seabra, P. Haddad, N. Duran, Biogenic synthesis of nanostructured
iron compounds: application and perspectives, IET
Nanobiotechnol., 7 (2013) 90–99.
- H. Katerina, S. Ivo, F. Jan, N. Maryla, T. Jiri, S. Mirka, H. Hideki,
T. Jun, Z. Radek, Magnetically responsive natural biogenic
iron oxides for organic xenobiotics removal, Nanocon, 16–18
Oct., Brno, Czech Republic, EU (2013).
- E.O. Omoregie, R.M. Couture, P.V. Cappellen, C.L. Corkhill,
J.M. Charnock, D.A. Polya, D. Vaughan, K. Vanbroekhoven,
J.R. Lloyd, Arsenic bioremediation by biogenic iron oxides and
sulphides, Appl. Environ. Microbiol., 79 (2013) 432–4335.
- A.J. Williams, D.Y. Sumner, C.N. Alpers, K.M. Campbell, D.K.
Nordstrom, Biogenic iron mineralization at iron mountain, ca,
with implication for detection with the mars curiosity rover,
45th Lunar and Planetary Science Conference (2014).
- J.A. Rentz, J.L. Ullman, Copper and zinc removal using biogenic
iron oxides, World Environ. Water Res. Congress: Crossing
Boundaries (2012).
- G.M. Ayoub, H. Kalinian, Removal of low-concentration phosphorus
using a fluidized raw dolomite bed, Water Env. Res., 78
(2006) 353–361.
- P. Cloud, Paleoecological significance of the banded iron formation,
Econ. Geol., 68 (1973) 1135–1143.
- S.S. Goldich, Ages of Precambrian banded iron-formation,
Econ. Geol., 68 (1973) 1126–1134.
- D. Emerson, N.P. Revsbech, Investigation of an iron-oxidizing
microbial mat community located near Aarhus, Denmark:
field studies, Appl. Environ. Microbiol., 60 (1994) 4022–4031.
- D. Emerson, C. Moyer, Isolation and characterization of novel
iron-oxidizing bacteria that grow at circumneutral pH, Appl.
Environ. Microbiol., 63 (1997) 4784–4792.
- D. Fortin, S. Langley, Formation and occurrence of biogenic
iron-rich minerals, Earth-Sci. Rev., 72 (2005) 1–19.
- D.E. Weiss, Bacterial iron oxidation in circumneutral freshwater
habitats: findings from the field and the laboratory, Geomicro.
J., 21 (2004) 405–414.
- K.J. Edwards, W. Bach, T.M. McCollom, D.R. Rogers, Neutrophilic
iron-oxidizing bacteria in the ocean: Their habitats, diversity, and
roles in mineral deposition, rock alteration, and biomass production
in the deep-sea, Geomicro. J., 21 (2004) 393–404.
- B. Kishor, N.R. Rawal, Studies on natural biogenic iron oxides
for removal of copper (II) ion from aqueous solution, Desal.
Water Treat., 88 (2017) 145–153.
- APHA, Standard methods for the examination of water and
wastewater, 22nd ed. American Public Health Association,
American Water Works Association, Water Environment Federation,
2012.
- Y.S. Al-Degs, M.A.M. Khraisheh, S.J. Allen, M.N. Ahmad,
Adsorption characteristics of reactive dyes in columns of activated
carbon, J. Hazard. Mater., 165 (2009) 944–949.
- A.A. Abia, O.B. Didi, E.D. Asuquo, Modelling of Cd(II) sorption
kinetics from aqueous solution onto some Thiolated agricultural
waste adsorbents, J. Appl. Sci. 6(12) (2006) 2549–2556.
- J.T. Nwabanne, P.K. Igbokwe, Adsorption performance of
packed bed column for the removal of lead (II) using oil palm
fibre, Int. J. Appl. Sci. Technol., 2(5) (2012) 148–156.
- K.S. Bharathi, S.P.T. Ramesh, Fixed-bed column studies on biosorption
of crystal violet from aqueous solution by citrullus
lanatus rind and cyperus rotundus, Appl. Water Sci., 3 (2013)
673–687.
- A. Saravanan, N. Uvaraja, S. Krishnan, Column study on the
removal of metals from industrial effluents using the biomass
Sargassum sp., Int. J. Appl. Res. Mech. Eng. (IJARME), 2(1)
(2012) 135–145.
- B.H. Stuart, Infrared Spectroscopy: Fundamentals and Applications,
Wiley, UK, 2004, 143 p.
- M. Naushad, T. Ahamad, G. Sharma, H. Ala’a, A.B. Albadarin,
M.M. Alam, Z.A. ALOthman, S.M. Alshehri, A.A. Ghfar, Synthesis
and characterization of a new starch/SnO2 nanocomposite
for efficient adsorption of toxic Hg2+ metal ion, Chem.
Eng. J., 300 (2016) 306−316.
- M. Naushad, T. Ahamad, B.M. Al-Maswari, A. Abdullah Alqadami,
S.M. Alshehri, Nickel ferrite bearing nitrogen-doped
mesoporous carbon as efficient adsorbent for the removal of
highly toxic metal ion from aqueous medium, Chem. Eng. J.,
330 (2017) 1351−1360.
- N.E.A. El-Gamela, L. Wortmann, K. Arroubb, S. Mathur, Surface
immobilization and release of sparfloxacin drug from
SiO2@Fe2O3 core-shell nanoparticles, Electro. Supple. Mater.
(ESI) for chemical communications, Royal Soc. Chem., (2011).
- R.D. Braun, Introduction to Instrumental Analysis, McGraw-Hill, Chemistry series. 1987, pp. 378–379.
- M.R. Awual, G.E. Eldesoky, T. Yaita, M. Naushad, H. Shiwaku,
Z.A. AlOthman, S. Suzuki, Schiff based ligand containing
nano-composite adsorbent for optical copper(II) ions removal
from aqueous solutions, Chem. Eng. J., 279 (2015) 639−647.
- N. Li, J. Ren, L. Zhao, Z.L. Wang, Fixed bed adsorption study
on phosphate removal using nanosized FeOOH-modified
anion resin, J. Nanomater., Hindawi Publishing Corporation,
(2013) (736275) (2013) 5–13.