References

  1. Z. Yan, S. Gong, L. An, L. Yue, Z. Xu, Enhanced catalytic activity of graphene oxide/CeO2 supported Pt toward HCHO decomposition at room temperature, React. Kinet. Mech. Catal., 124 (2018) 293–304.
  2. Y. Zhao, Y. Wei, X. Wu, H. Zheng, Z. Zhao, J. Liu, J. Li, Graphene-wrapped Pt/TiO2 photocatalysts with enhanced photogenerated charges separation and reactant adsorption for high selective photoreduction of CO2 to CH4, Appl. Catal. B Environ., 226 (2018) 360–372.
  3. Z. Yan, Z. Yang, Z. Xu, L. An, F. Xie, J. Liu, Enhanced room-temperature catalytic decomposition of formaldehyde on magnesium- aluminum hydrotalcite/boehmite supported platinum nanoparticles catalyst, J. Colloid Interface Sci., 524 (2018) 306–312.
  4. K. Qi, Y. Xie, R. Wang, S.-y. Liu, Z. Zhao, Electroless plating Ni-P cocatalyst decorated g-C3N4 with enhanced photocatalytic water splitting for H2 generation, Appl. Surf. Sci., 466 (2019) 847–853.
  5. L. Wang, S. Wang, H. Fu, Y. Wang, K. Yu, Synthesis of Au nanoparticles functionalized 1D α-MoO3 nanobelts and their gas sensing properties, NANO: Brief Reports Rev., 13 (2018) 1850115.
  6. K. Qi, S.-y. Liu, M. Qiu, Photocatalytic performance of TiO2 nanocrystals with/without oxygen defects, Chin. J. Catal., 39 (2018) 867–875.
  7. Z. Wei, Y. Zhang, S. Wang, C. Wang, J. Ma, Fe-doped phosphorene for the nitrogen reduction reaction, J. Mater. Chem. A, 6 (2018) 13790–13796
  8. B. Wang, J. Xia, L. Mei, L. Wang, Q. Zhang, Highly efficient and rapid lead(II) scavenging by the natural artemia cyst shell with unique three-dimensional porous structure and strong sorption affinity, ACS Sustain. Chem. Eng., 6 (2017) 1343–1351.
  9. K. Qi, B. Cheng, J. Yu, W. Ho, Review on the improvement of the photocatalytic and antibacterial activities of ZnO, J. Alloys Comp., 727 (2017) 792–820.
  10. K. Qi, S.-y. Liu, Y. Chen, B. Xia, G.-D. Li, A simple post-treatment with urea solution to enhance the photoelectric conversion efficiency for TiO2 dye-sensitized solar cells, Sol. Energy Mater. Sol. Cells, 183 (2018) 193–199.
  11. J. Zhou, H. Hou, M. Lin, Y. Su, Y. Lu, J. Zhang, G. Qian, Photocatalytic performance of SiO2-TiO2 composite via F-assisted restructure of Ti-bearing slag, Desal. Water Treat., 132 (2018) 157–166.
  12. K. Qi, S. Karthikeyan, W. Kim, F.A. Marzouqi, I.S. Al-Khusaibi, Y. Kim, R. Selvaraj, Hydrothermal synthesis of SnS2 nanocrystals for photocatalytic degradation of 2,4,6-trichlorophenol under white LED light irradiation, Desal. Water Treat., 92 (2017) 108–115.
  13. S. Abuzerr, M. Darwish, A. Mohammadi, S.S. Hossein, A.H. Mahvi, Enhancement of Reactive Red 198 dye photocatalytic degradation using physical mixtures of ZnO-graphene nanocomposite and TiO2 nanoparticles: an optimized study by response surface methodology, Desal. Water Treat., 135 (2018) 290–301.
  14. M. Ni, M.K.H. Leung, D.Y.C. Leung, K. Sumathy, A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production, Renew. Sustain. Energy Rev., 11 (2007) 401–425.
  15. A. Kudo, Y. Miseki, Heterogeneous photocatalyst materials for water splitting, Chem. Soc. Rev., 38 (2009) 253–278.
  16. A. Fujishima, X. Zhang, D. Tryk, TiO2 photocatalysis and related surface phenomena, Surf. Sci. Rep., 63 (2008) 515–582.
  17. A.P. Mbouopda, E. Acayanka, S. Nzali, G.Y. Kamgang, E.B. Njoyim Tamungang, S. Laminsi, D. Richard, Comparative study of plasma-synthesized and commercial-P25 TiO2 for photocatalytic discoloration of Reactive Red 120 dye in aqueous solution, Desal. Water Treat., 136 (2018) 413–421.
  18. B.R. Shah, U.D. Patel, Reductive photocatalytic decolourization of an azo dye Reactive Black 5 using TiO2: mechanism and role of reductive species, Desal. Water Treat., 130 (2018) 214–225.
  19. T. Ouyang, Y.-Q. Ye, C.-Y. Wu, K. Xiao, Z.-Q. Liu, Heterostructures composed of N-doped carbon nanotubes encapsulating cobalt and β-Mo2C nanoparticles as bifunctional electrodes for water splitting, Angew. Chem. Int. Ed., 58 (2019) 1–7.
  20. K. Qi, Y. Li, Y. Xie, S.-y. Liu, K. Zheng, Z. Chen, R. Wang, Ag loading enhanced photocatalytic activity of g-C3N4 porous nanosheets for decomposition of organic pollutants, Frontiers in Chemistry (2019) DOI:10.3389/fchem.2019.00091.
  21. L. Bo, H. Han, H. Liu, Influence of water quality on photocatalytic degradation of trace carbamazepine in real water bodies, Desal. Water Treat., 124 (2018) 240–247.
  22. W. Zhang, Y. Dong, C. Li, Effects of calcination temperature on photocatalytic degradation of ofloxacin on Gd2Ti2O7/HZSM-5, Desal. Water Treat., 126 (2018) 224–230.
  23. M. Khanahmadi, M. Hajaghazadeh, F. Nejatzadeh-Barandozi, F. Gholami-Borujeni, Photocatalytic oxidation process (UV-Fe2O3) efficiency for degradation of hydroquinone, Desal. Water Treat., 106 (2018) 305–311.
  24. F. Al Marzouqi, R. Selvaraj, Y. Kim, Thermal oxidation etching process of g-C3N4 nanosheets from their bulk materials and its photocatalytic activity under solar light irradiation, Desal. Water Treat., 116 (2018) 267–276.
  25. Q. Xu, B. Zhu, C. Jiang, B. Cheng, J. Yu, Constructing 2D/2D Fe2O3/g-C3N4 Direct Z-Scheme Photocatalysts with Enhanced H2 Generation Performance, Solar RRL, 2 (2018) 1800006.
  26. J. Fu, B. Zhu, W. You, M. Jaroniec, J. Yu, A flexible bio-inspired H2-production photocatalyst, Appl. Catal. B Environ., 220 (2018) 148–160.
  27. M.S. Akple, J. Low, S. Wageh, A.A. Al-Ghamdi, J. Yu, J. Zhang, Enhanced visible light photocatalytic H2-production of g-C3N4/WS2 composite heterostructures, Appl. Surf. Sci., 358 (2015) 196–203.
  28. K. Qi, B. Cheng, J. Yu, W. Ho, A review on TiO2-based Z-scheme photocatalysts, Chin. J. Catal., 38 (2017) 1936–1955.
  29. Q. Xiang, J. Yu, M. Jaroniec, Preparation and enhanced visible-light photocatalytic H2-production activity of graphene/C3N4 composites, J. Phys. Chem. C, 115 (2011) 7355–7363.
  30. J. Yu, K. Wang, W. Xiao, B. Cheng, Photocatalytic reduction of CO2 into hydrocarbon solar fuels over g-C3N4–Pt nanocomposite photocatalysts, Phys. Chem. Chem. Phys., 16 (2014) 11492–11501
  31. W.-J. Ong, L.-L. Tan, S.-P. Chai, S.-T. Yong, Heterojunction engineering of graphitic carbon nitride (g-C3N4) via Pt loading with improved daylight-induced photocatalytic reduction of carbon dioxide to methane, Dalton Trans., 44 (2015) 1249–1257.
  32. X. Wang, J. Cheng, H. Yu, J. Yu, A facile hydrothermal synthesis of carbon dots modified g-C3N4 for enhanced photocatalytic H2-evolution performance, Dalton Trans., 46 (2017) 6417–6424.
  33. B. Zhu, L. Zhang, B. Cheng, J. Yu, First-principle calculation study of tri-s-triazine-based g-C3N4: A review, Appl. Catal. B Environ., 224 (2018) 983–999.
  34. J. Fu, Q. Xu, J. Low, C. Jiang, J. Yu, Ultrathin 2D/2D WO3/g-C3N4 step-scheme H2-production photocatalyst, Appl. Catal. B Environ., 243 (2019) 556–565.
  35. G. Zhang, Z.-A. Lan, X. Wang, Surface engineering of graphitic carbon nitride polymers with cocatalysts for photocatalytic overall water splitting, Chem. Sci., 8 (2017) 5261–5274.
  36. Z. Lu, W. Song, C. Ouyang, H. Wang, D. Zeng, C. Xie, Enhanced visible-light photocatalytic performance of highly-dispersed Pt/g-C3N4 nanocomposites by one-step solvothermal treatment, RSC Adv., 7 (2017) 33552–33557.
  37. F. Fina, H. Menard, J.T.S. Irvine, The effect of Pt NPs crystallinity and distribution on the photocatalytic activity of Pt-g-C3N4, Phys. Chem. Chem. Phys., 17 (2015) 13929–13936.
  38. Y. Fu, T. Huang, L. Zhang, J. Zhu, X. Wang, Ag/g-C3N4 catalyst with superior catalytic performance for the degradation of dyes: a borohydride-generated superoxide radical approach, Nanoscale, 7 (2015) 13723–13733.
  39. M. Ou, S. Wan, Q. Zhong, S. Zhang, Y. Wang, Single Pt atoms deposition on g-C3N4 nanosheets for photocatalytic H2 evolution or NO oxidation under visible light, Int. J. Hydrogen Energy, 42 (2017) 27043–27054.
  40. T. Tong, B. Zhu, C. Jiang, B. Cheng, J. Yu, Mechanistic insight into the enhanced photocatalytic activity of single-atom Pt, Pd or Au-embedded g-C3N4, Appl. Surf. Sci., 433 (2018) 1175–1183.
  41. J. Zhang, M. Grzelczak, Y. Hou, K. Maeda, K. Domen, X. Fu, M. Antonietti, X. Wang, Photocatalytic oxidation of water by polymeric carbon nitride nanohybrids made of sustainable elements, Chem. Sci., 3 (2012) 443–446.
  42. Z. Zhao, Y. Sun, F. Dong, Graphitic carbon nitride based nanocomposites: a review, Nanoscale, 7 (2015) 15–37.
  43. G. Kresse, J. Hafner, Ab initiomolecular-dynamics simulation of the liquid-metal–amorphous-semiconductor transition in germanium, Phys. Rev. B, 49 (1994) 14251–14269.
  44. G. Kresse, J. Furthmiiller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a planewave basis set, Comput. Mater. Sci., 6 (1996) 15–50.
  45. J.P. Perdew, J.A. Chevary, S.H. Vosko, K.A. Jackson, M.R. Pederson, D.J. Singh, C. Fiolhais, Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation, Phys. Rev. B, 46 (1992) 6671–6687.
  46. P.E. Blöchl, Projector augmented-wave method, Phys. Rev. B, 50 (1994) 17953–17979.
  47. G. Kresse, From ultrasoft pseudopotentials to the projector augmented-wave method, Phys. Rev. B, 59 (1999) 1758–1775.
  48. H.J. Monkhorst, J.D. Pack, Special points for Brillouin-zone integrations, Phys. Rev. B, 13 (1976) 5188–5192.
  49. Q. Lin, L. Li, S. Liang, M. Liu, J. Bi, L. Wu, Efficient synthesis of monolayer carbon nitride 2D nanosheet with tunable concentration and enhanced visible-light photocatalytic activities, Appl. Catal. B Environ., 163 (2015) 135–142.
  50. S. Huang, Y. Xu, M. Xie, H. Xu, M. He, J. Xia, L. Huang, H. Li, Synthesis of magnetic CoFe2O4/g-C3N4 composite and its enhancement of photocatalytic ability under visible-light, Colloids Surf. A, 478 (2015) 71–80.
  51. J.-X. Sun, Y.-P. Yuan, L.-G. Qiu, X. Jiang, A.-J. Xie, Y.-H. Shen, J.-F. Zhu, Fabrication of composite photocatalyst g-C3N4–ZnO and enhancement of photocatalytic activity under visible light, Dalton Trans., 41 (2012) 6756–6763.
  52. S. Yang, Y. Gong, J. Zhang, L. Zhan, L. Ma, Z. Fang, R. Vajtai, X. Wang, P.M. Ajayan, Exfoliated graphitic carbon nitride nanosheets as efficient catalysts for hydrogen evolution under visible light, Adv. Mater., 25 (2013) 2452–2456.
  53. T. Chen, W. Quan, L. Yu, Y. Hong, C. Song, M. Fan, L. Xiao, W. Gu, W. Shi, One-step synthesis and visible-light-driven H2 production from water splitting of Ag quantum dots/g-C3N4 photocatalysts, J. Alloys Compd., 686 (2016) 628–634.
  54. E. Liu, L. Kang, F. Wu, T. Sun, X. Hu, Y. Yang, H. Liu, J. Fan, Photocatalytic reduction of CO2 into methanol over Ag/TiO2 nanocomposites enhanced by surface plasmon resonance, Plasmonics, 9 (2013) 61–70.
  55. Y. Hong, Y. Jiang, C. Li, W. Fan, X. Yan, M. Yan, W. Shi, In-situ synthesis of direct solid-state Z-scheme V2O5/g-C3N4 heterojunctions with enhanced visible light efficiency in photocatalytic degradation of pollutants, Appl. Catal. B Environ., 180 (2016) 663–673.
  56. S. Yang, H. Wang, H. Yu, S. Zhang, Y. Fang, S. Zhang, F. Peng, A facile fabrication of hierarchical Ag nanoparticles-decorated N-TiO2 with enhanced photocatalytic hydrogen production under solar light, Int. J. Hydrogen Energy, 41 (2016) 3446–3455.
  57. Y. Yang, Y. Guo, F. Liu, X. Yuan, Y. Guo, S. Zhang, W. Guo, M. Huo, Preparation and enhanced visible-light photocatalytic activity of silver deposited graphitic carbon nitride plasmonic photocatalyst, Appl. Catal. B Environ., 142–143 (2013) 828–837.
  58. Q. Zhai, S. Xie, W. Fan, Q. Zhang, Y. Wang, W. Deng, Y. Wang, Photocatalytic conversion of carbon dioxide with water into methane: platinum and copper(I) oxide Co-catalysts with a core-shell structure, Angew. Chem. Int. Ed., 52 (2013) 5776–5779.
  59. T. Hirakawa, Y. Nosaka, Properties of O2–• and OHm formed in TiO2 aqueous suspensions by photocatalytic reaction and the influence of H2O2 and some ions, Langmuir, 18 (2002) 3247–3254.
  60. B. Hammer, J.K. Norskov, Electronic factors determining the reactivity of metal surfaces, Surf. Sci., 343 (1995) 211–220.
  61. M. Mavrikakis, B. Hammer, J.K. Nørskov, Effect of strain on the reactivity of metal surfaces, Phys. Rev. Lett., 81 (1998) 2819–2822.
  62. B. Hammer, J.K. Norskov, Theoretical surface science and catalysis—calculations and concepts, Adv. Catal., 45 (2000) 71–129.
  63. H.-S. Wu, L.-D. Sun, H.-P. Zhou, C.-H. Yan, Novel TiO2–Pt@SiO2 nanocomposites with high photocatalytic activity, Nanoscale, 4 (2012) 3242–3247.
  64. G. Liu, K. Du, S. Haussener, K. Wang, Charge transport in two-photon semiconducting structures for solar fuels, Chem. Sus. Chem., 9 (2016) 2878–2904.