References
- Z. Yan, S. Gong, L. An, L. Yue, Z. Xu, Enhanced catalytic
activity of graphene oxide/CeO2 supported Pt toward HCHO
decomposition at room temperature, React. Kinet. Mech.
Catal., 124 (2018) 293–304.
- Y. Zhao, Y. Wei, X. Wu, H. Zheng, Z. Zhao, J. Liu, J. Li,
Graphene-wrapped Pt/TiO2 photocatalysts with enhanced
photogenerated charges separation and reactant adsorption
for high selective photoreduction of CO2 to CH4, Appl. Catal. B
Environ., 226 (2018) 360–372.
- Z. Yan, Z. Yang, Z. Xu, L. An, F. Xie, J. Liu, Enhanced room-temperature
catalytic decomposition of formaldehyde on magnesium-
aluminum hydrotalcite/boehmite supported platinum
nanoparticles catalyst, J. Colloid Interface Sci., 524 (2018) 306–312.
- K. Qi, Y. Xie, R. Wang, S.-y. Liu, Z. Zhao, Electroless plating
Ni-P cocatalyst decorated g-C3N4 with enhanced photocatalytic
water splitting for H2 generation, Appl. Surf. Sci., 466
(2019) 847–853.
- L. Wang, S. Wang, H. Fu, Y. Wang, K. Yu, Synthesis of Au
nanoparticles functionalized 1D α-MoO3 nanobelts and their
gas sensing properties, NANO: Brief Reports Rev., 13 (2018)
1850115.
- K. Qi, S.-y. Liu, M. Qiu, Photocatalytic performance of TiO2
nanocrystals with/without oxygen defects, Chin. J. Catal., 39
(2018) 867–875.
- Z. Wei, Y. Zhang, S. Wang, C. Wang, J. Ma, Fe-doped phosphorene
for the nitrogen reduction reaction, J. Mater. Chem. A,
6 (2018) 13790–13796
- B. Wang, J. Xia, L. Mei, L. Wang, Q. Zhang, Highly efficient
and rapid lead(II) scavenging by the natural artemia cyst shell
with unique three-dimensional porous structure and strong
sorption affinity, ACS Sustain. Chem. Eng., 6 (2017) 1343–1351.
- K. Qi, B. Cheng, J. Yu, W. Ho, Review on the improvement of
the photocatalytic and antibacterial activities of ZnO, J. Alloys
Comp., 727 (2017) 792–820.
- K. Qi, S.-y. Liu, Y. Chen, B. Xia, G.-D. Li, A simple post-treatment
with urea solution to enhance the photoelectric conversion
efficiency for TiO2 dye-sensitized solar cells, Sol. Energy
Mater. Sol. Cells, 183 (2018) 193–199.
- J. Zhou, H. Hou, M. Lin, Y. Su, Y. Lu, J. Zhang, G. Qian, Photocatalytic
performance of SiO2-TiO2 composite via F-assisted
restructure of Ti-bearing slag, Desal. Water Treat., 132 (2018)
157–166.
- K. Qi, S. Karthikeyan, W. Kim, F.A. Marzouqi, I.S. Al-Khusaibi, Y.
Kim, R. Selvaraj, Hydrothermal synthesis of SnS2 nanocrystals for
photocatalytic degradation of 2,4,6-trichlorophenol under white
LED light irradiation, Desal. Water Treat., 92 (2017) 108–115.
- S. Abuzerr, M. Darwish, A. Mohammadi, S.S. Hossein, A.H.
Mahvi, Enhancement of Reactive Red 198 dye photocatalytic degradation
using physical mixtures of ZnO-graphene nanocomposite
and TiO2 nanoparticles: an optimized study by response
surface methodology, Desal. Water Treat., 135 (2018) 290–301.
- M. Ni, M.K.H. Leung, D.Y.C. Leung, K. Sumathy, A review and
recent developments in photocatalytic water-splitting using
TiO2 for hydrogen production, Renew. Sustain. Energy Rev., 11
(2007) 401–425.
- A. Kudo, Y. Miseki, Heterogeneous photocatalyst materials for
water splitting, Chem. Soc. Rev., 38 (2009) 253–278.
- A. Fujishima, X. Zhang, D. Tryk, TiO2 photocatalysis and
related surface phenomena, Surf. Sci. Rep., 63 (2008) 515–582.
- A.P. Mbouopda, E. Acayanka, S. Nzali, G.Y. Kamgang, E.B.
Njoyim Tamungang, S. Laminsi, D. Richard, Comparative
study of plasma-synthesized and commercial-P25 TiO2 for
photocatalytic discoloration of Reactive Red 120 dye in aqueous
solution, Desal. Water Treat., 136 (2018) 413–421.
- B.R. Shah, U.D. Patel, Reductive photocatalytic decolourization
of an azo dye Reactive Black 5 using TiO2: mechanism and role
of reductive species, Desal. Water Treat., 130 (2018) 214–225.
- T. Ouyang, Y.-Q. Ye, C.-Y. Wu, K. Xiao, Z.-Q. Liu, Heterostructures
composed of N-doped carbon nanotubes encapsulating
cobalt and β-Mo2C nanoparticles as bifunctional electrodes for
water splitting, Angew. Chem. Int. Ed., 58 (2019) 1–7.
- K. Qi, Y. Li, Y. Xie, S.-y. Liu, K. Zheng, Z. Chen, R. Wang, Ag
loading enhanced photocatalytic activity of g-C3N4 porous
nanosheets for decomposition of organic pollutants, Frontiers
in Chemistry (2019) DOI:10.3389/fchem.2019.00091.
- L. Bo, H. Han, H. Liu, Influence of water quality on photocatalytic
degradation of trace carbamazepine in real water bodies,
Desal. Water Treat., 124 (2018) 240–247.
- W. Zhang, Y. Dong, C. Li, Effects of calcination temperature on
photocatalytic degradation of ofloxacin on Gd2Ti2O7/HZSM-5,
Desal. Water Treat., 126 (2018) 224–230.
- M. Khanahmadi, M. Hajaghazadeh, F. Nejatzadeh-Barandozi,
F. Gholami-Borujeni, Photocatalytic oxidation process
(UV-Fe2O3) efficiency for degradation of hydroquinone, Desal.
Water Treat., 106 (2018) 305–311.
- F. Al Marzouqi, R. Selvaraj, Y. Kim, Thermal oxidation etching
process of g-C3N4 nanosheets from their bulk materials and
its photocatalytic activity under solar light irradiation, Desal.
Water Treat., 116 (2018) 267–276.
- Q. Xu, B. Zhu, C. Jiang, B. Cheng, J. Yu, Constructing 2D/2D
Fe2O3/g-C3N4 Direct Z-Scheme Photocatalysts with Enhanced
H2 Generation Performance, Solar RRL, 2 (2018) 1800006.
- J. Fu, B. Zhu, W. You, M. Jaroniec, J. Yu, A flexible bio-inspired
H2-production photocatalyst, Appl. Catal. B Environ., 220
(2018) 148–160.
- M.S. Akple, J. Low, S. Wageh, A.A. Al-Ghamdi, J. Yu, J. Zhang,
Enhanced visible light photocatalytic H2-production of
g-C3N4/WS2 composite heterostructures, Appl. Surf. Sci., 358
(2015) 196–203.
- K. Qi, B. Cheng, J. Yu, W. Ho, A review on TiO2-based Z-scheme
photocatalysts, Chin. J. Catal., 38 (2017) 1936–1955.
- Q. Xiang, J. Yu, M. Jaroniec, Preparation and enhanced visible-light photocatalytic H2-production activity of graphene/C3N4 composites, J. Phys. Chem. C, 115 (2011) 7355–7363.
- J. Yu, K. Wang, W. Xiao, B. Cheng, Photocatalytic reduction of
CO2 into hydrocarbon solar fuels over g-C3N4–Pt nanocomposite
photocatalysts, Phys. Chem. Chem. Phys., 16 (2014) 11492–11501
- W.-J. Ong, L.-L. Tan, S.-P. Chai, S.-T. Yong, Heterojunction engineering
of graphitic carbon nitride (g-C3N4) via Pt loading with
improved daylight-induced photocatalytic reduction of carbon
dioxide to methane, Dalton Trans., 44 (2015) 1249–1257.
- X. Wang, J. Cheng, H. Yu, J. Yu, A facile hydrothermal synthesis
of carbon dots modified g-C3N4 for enhanced photocatalytic
H2-evolution performance, Dalton Trans., 46 (2017) 6417–6424.
- B. Zhu, L. Zhang, B. Cheng, J. Yu, First-principle calculation
study of tri-s-triazine-based g-C3N4: A review, Appl. Catal. B
Environ., 224 (2018) 983–999.
- J. Fu, Q. Xu, J. Low, C. Jiang, J. Yu, Ultrathin 2D/2D WO3/g-C3N4 step-scheme H2-production photocatalyst, Appl. Catal. B
Environ., 243 (2019) 556–565.
- G. Zhang, Z.-A. Lan, X. Wang, Surface engineering of graphitic
carbon nitride polymers with cocatalysts for photocatalytic
overall water splitting, Chem. Sci., 8 (2017) 5261–5274.
- Z. Lu, W. Song, C. Ouyang, H. Wang, D. Zeng, C. Xie, Enhanced
visible-light photocatalytic performance of highly-dispersed
Pt/g-C3N4 nanocomposites by one-step solvothermal treatment,
RSC Adv., 7 (2017) 33552–33557.
- F. Fina, H. Menard, J.T.S. Irvine, The effect of Pt NPs crystallinity
and distribution on the photocatalytic activity of Pt-g-C3N4,
Phys. Chem. Chem. Phys., 17 (2015) 13929–13936.
- Y. Fu, T. Huang, L. Zhang, J. Zhu, X. Wang, Ag/g-C3N4 catalyst
with superior catalytic performance for the degradation
of dyes: a borohydride-generated superoxide radical approach,
Nanoscale, 7 (2015) 13723–13733.
- M. Ou, S. Wan, Q. Zhong, S. Zhang, Y. Wang, Single Pt atoms
deposition on g-C3N4 nanosheets for photocatalytic H2 evolution
or NO oxidation under visible light, Int. J. Hydrogen
Energy, 42 (2017) 27043–27054.
- T. Tong, B. Zhu, C. Jiang, B. Cheng, J. Yu, Mechanistic insight
into the enhanced photocatalytic activity of single-atom Pt, Pd
or Au-embedded g-C3N4, Appl. Surf. Sci., 433 (2018) 1175–1183.
- J. Zhang, M. Grzelczak, Y. Hou, K. Maeda, K. Domen, X. Fu,
M. Antonietti, X. Wang, Photocatalytic oxidation of water by
polymeric carbon nitride nanohybrids made of sustainable elements,
Chem. Sci., 3 (2012) 443–446.
- Z. Zhao, Y. Sun, F. Dong, Graphitic carbon nitride based nanocomposites:
a review, Nanoscale, 7 (2015) 15–37.
- G. Kresse, J. Hafner, Ab initiomolecular-dynamics simulation
of the liquid-metal–amorphous-semiconductor transition in
germanium, Phys. Rev. B, 49 (1994) 14251–14269.
- G. Kresse, J. Furthmiiller, Efficiency of ab-initio total energy
calculations for metals and semiconductors using a planewave
basis set, Comput. Mater. Sci., 6 (1996) 15–50.
- J.P. Perdew, J.A. Chevary, S.H. Vosko, K.A. Jackson, M.R. Pederson,
D.J. Singh, C. Fiolhais, Atoms, molecules, solids, and surfaces:
Applications of the generalized gradient approximation
for exchange and correlation, Phys. Rev. B, 46 (1992) 6671–6687.
- P.E. Blöchl, Projector augmented-wave method, Phys. Rev. B,
50 (1994) 17953–17979.
- G. Kresse, From ultrasoft pseudopotentials to the projector
augmented-wave method, Phys. Rev. B, 59 (1999) 1758–1775.
- H.J. Monkhorst, J.D. Pack, Special points for Brillouin-zone
integrations, Phys. Rev. B, 13 (1976) 5188–5192.
- Q. Lin, L. Li, S. Liang, M. Liu, J. Bi, L. Wu, Efficient synthesis
of monolayer carbon nitride 2D nanosheet with tunable concentration
and enhanced visible-light photocatalytic activities,
Appl. Catal. B Environ., 163 (2015) 135–142.
- S. Huang, Y. Xu, M. Xie, H. Xu, M. He, J. Xia, L. Huang, H.
Li, Synthesis of magnetic CoFe2O4/g-C3N4 composite and its
enhancement of photocatalytic ability under visible-light, Colloids
Surf. A, 478 (2015) 71–80.
- J.-X. Sun, Y.-P. Yuan, L.-G. Qiu, X. Jiang, A.-J. Xie, Y.-H. Shen,
J.-F. Zhu, Fabrication of composite photocatalyst g-C3N4–ZnO
and enhancement of photocatalytic activity under visible light,
Dalton Trans., 41 (2012) 6756–6763.
- S. Yang, Y. Gong, J. Zhang, L. Zhan, L. Ma, Z. Fang, R. Vajtai,
X. Wang, P.M. Ajayan, Exfoliated graphitic carbon nitride
nanosheets as efficient catalysts for hydrogen evolution under
visible light, Adv. Mater., 25 (2013) 2452–2456.
- T. Chen, W. Quan, L. Yu, Y. Hong, C. Song, M. Fan, L. Xiao,
W. Gu, W. Shi, One-step synthesis and visible-light-driven H2
production from water splitting of Ag quantum dots/g-C3N4
photocatalysts, J. Alloys Compd., 686 (2016) 628–634.
- E. Liu, L. Kang, F. Wu, T. Sun, X. Hu, Y. Yang, H. Liu, J. Fan,
Photocatalytic reduction of CO2 into methanol over Ag/TiO2
nanocomposites enhanced by surface plasmon resonance,
Plasmonics, 9 (2013) 61–70.
- Y. Hong, Y. Jiang, C. Li, W. Fan, X. Yan, M. Yan, W. Shi, In-situ
synthesis of direct solid-state Z-scheme V2O5/g-C3N4 heterojunctions
with enhanced visible light efficiency in photocatalytic
degradation of pollutants, Appl. Catal. B Environ., 180
(2016) 663–673.
- S. Yang, H. Wang, H. Yu, S. Zhang, Y. Fang, S. Zhang, F. Peng,
A facile fabrication of hierarchical Ag nanoparticles-decorated
N-TiO2 with enhanced photocatalytic hydrogen production
under solar light, Int. J. Hydrogen Energy, 41 (2016) 3446–3455.
- Y. Yang, Y. Guo, F. Liu, X. Yuan, Y. Guo, S. Zhang, W. Guo, M.
Huo, Preparation and enhanced visible-light photocatalytic
activity of silver deposited graphitic carbon nitride plasmonic
photocatalyst, Appl. Catal. B Environ., 142–143 (2013) 828–837.
- Q. Zhai, S. Xie, W. Fan, Q. Zhang, Y. Wang, W. Deng, Y. Wang,
Photocatalytic conversion of carbon dioxide with water into
methane: platinum and copper(I) oxide Co-catalysts with a
core-shell structure, Angew. Chem. Int. Ed., 52 (2013) 5776–5779.
- T. Hirakawa, Y. Nosaka, Properties of O2–• and OHm• formed in
TiO2 aqueous suspensions by photocatalytic reaction and the
influence of H2O2 and some ions, Langmuir, 18 (2002) 3247–3254.
- B. Hammer, J.K. Norskov, Electronic factors determining the
reactivity of metal surfaces, Surf. Sci., 343 (1995) 211–220.
- M. Mavrikakis, B. Hammer, J.K. Nørskov, Effect of strain on
the reactivity of metal surfaces, Phys. Rev. Lett., 81 (1998) 2819–2822.
- B. Hammer, J.K. Norskov, Theoretical surface science and
catalysis—calculations and concepts, Adv. Catal., 45 (2000)
71–129.
- H.-S. Wu, L.-D. Sun, H.-P. Zhou, C.-H. Yan, Novel TiO2–Pt@SiO2
nanocomposites with high photocatalytic activity, Nanoscale,
4 (2012) 3242–3247.
- G. Liu, K. Du, S. Haussener, K. Wang, Charge transport in
two-photon semiconducting structures for solar fuels, Chem.
Sus. Chem., 9 (2016) 2878–2904.