References
- Y. Bulut, N. Gözübenli, H. Aydın, Equilibrium and kinetics
studies for adsorption of direct blue 71 from aqueous solution
by wheat shells, J. Hazard. Mater., 144(1–2) (2007) 300–306.
- Z. Ai, J. Li, L. Zhang, S. Lee, Rapid decolorization of azo dyes
in aqueous solution by an ultrasound-assisted electrocatalytic
oxidation process, Ultrason. Sonochem., 17(2) (2010) 370–375.
- Z. Berizi, S.Y. Hashemi, M. Hadi, A. Azari, A.H. Mahvi, The
study of non-linear kinetics and adsorption isotherm models
for Acid Red 18 from aqueous solutions by magnetite nanoparticles
and magnetite nanoparticles modified by sodium alginate,
Water Sci. Technol., 74(5) (2016) 1235–1242.
- M.J. Iqbal, M.N. Ashiq, Adsorption of dyes from aqueous solutions
on activated charcoal, J. Hazard. Mater., 139(1) (2007)
57–66.
- M.T. Yagub, T.K. Sen, S. Afroze, H.M. Ang, Dye and its removal
from aqueous solution by adsorption: a review, Adv. Colloid
Interf., 209 (2014) 172–184.
- M.O. Omorogie, J.O. Babalola, E.I. Unuabonah, Regeneration
strategies for spent solid matrices used in adsorption of
organic pollutants from surface water: a critical review, Desal.
Water Treat., 57(2) (2016) 518–544.
- F.K. Yuen, B. Hameed, Recent developments in the preparation
and regeneration of activated carbons by microwaves, Adv.
Colloid Interf., 149(1–2) (2009) 19–27.
- R. Berenguer, J. Marco-Lozar, C. Quijada, D. Cazorla-Amorós,
E. Morallon, Electrochemical regeneration and porosity recovery
of phenol-saturated granular activated carbon in an alkaline
medium, Carbon, 48(10) (2010) 2734–2745.
- M.-W. Jung, K.-H. Ahn, Y. Lee, K.-P. Kim, J.-S. Rhee, J.T. Park,
K.-J. Paeng, Adsorption characteristics of phenol and chlorophenols
on granular activated carbons (GAC), Microchem. J.,
70(2) (2001) 123–131.
- N. Brown, E. Roberts, A. Garforth, R. Dryfe, Electrochemical
regeneration of a carbon-based adsorbent loaded with crystal
violet dye, Electrochim. Acta, 49(20) (2004) 3269–3281.
- G. Zhang, S. Wang, Z. Liu, Ultrasonic regeneration of granular
activated carbon, Environ. Eng. Sci., 20(1) (2003) 57–64.
- S.-R. Ha, S. Vinitnantharat, H. Ozaki, Bioregeneration by mixed
microorganisms of granular activated carbon loaded with a
mixture of phenols, Biotechnol. Lett., 22(13) (2000) 1093–1096.
- P.M. Coss, C.Y. Cha, Microwave regeneration of activated carbon
used for removal of solvents from vented air, JAPCA J. Air
Waste Manage., 50(4) (2000) 529–535.
- A. Bagreev, H. Rahman, T.J. Bandosz, Thermal regeneration of
a spent activated carbon previously used as hydrogen sulfide
adsorbent, Carbon, 39(9) (2001) 1319–1326.
- O. Belyaeva, N. Golubeva, T. Krasnova, A. Yakusheva, Developing
a technology for the regeneration of active coal after
pyridine adsorption from wastewater, Chem. Sustain. Dev., 17
(2009) 243–247.
- R.M. Narbaitz, J. Cen, Electrochemical regeneration of granular
activated carbon, Water Res., 28(8) (1994) 1771–1778.
- S.-J. Park, S.-D. Yeo, Supercritical extraction of phenols from
organically modified smectite, Sep. Sci. Technol., 34(1) (1999)
101–113.
- L.C. Toledo, A.C.B. Silva, R. Augusti, R.M. Lago, Application
of Fenton’s reagent to regenerate activated carbon saturated
with organochloro compounds, Chemosphere, 50(8) (2003)
1049–1054.
- J.B. Parsa, F. Jafari, Sono-Fenton regeneration of granular
activated carbon saturated with Rhodamine B: Optimization
using response surface methodology, Chem. Eng. Commun.,
204(9) (2017) 1070–1081.
- R. Berenguer, J. Marco-Lozar, C. Quijada, D. Cazorla-Amorós,
E. Morallón, Comparison among chemical, thermal, and electrochemical
regeneration of phenol-saturated activated carbon,
Energ. Fuel, 24(6) (2010) 3366–3372.
- L. Wang, N. Balasubramanian, Electrochemical regeneration
of granular activated carbon saturated with organic compounds,
Chem. Eng. J., 155(3) (2009) 763–768.
- Y.-D. Dai, C. Yuan, C. Huang, P.-C. Chiang, Regeneration of
spent carbon nanotubes by electrochemical oxidation over
RuO2/Ti electrode, Sep. Purif. Technol., 178 (2017) 207–214.
- R. Narbaitz, A. Karimi-Jashni, Electrochemical regeneration
of granular activated carbons loaded with phenol and natural
organic matter, Environ. Technol., 30(1) (2009) 27–36.
- N. Brown, E. Roberts, A. Chasiotis, T. Cherdron, N. Sanghrajka,
Atrazine removal using adsorption and electrochemical
regeneration, Water Res., 38(13) (2004) 3067–3074.
- R. Narbaitz, J. Cen, Alternative methods for determining the
percentage regeneration of activated carbon, Water Res., 31(10)
(1997) 2532–2542.
- C.-H. Weng, M.-C. Hsu, Regeneration of granular activated
carbon by an electrochemical process, Sep. Purif. Technol.,
64(2) (2008) 227–236.
- M. Zhou, Q. Dai, L. Lei, C.a. Ma, D. Wang, Long life modified
lead dioxide anode for organic wastewater treatment: electrochemical
characteristics and degradation mechanism, Environ.
Sci. Technol., 39(1) (2005) 363–370.
- K. Jardak, A. Dirany, P. Drogui, M.A. El Khakani, Electrochemical
degradation of ethylene glycol in antifreeze liquids using
boron doped diamond anode, Sep. Purif. Technol., 168 (2016)
215–222.
- H. Zhang, L. Ye, H. Zhong, Regeneration of phenol-saturated
activated carbon in an electrochemical reactor, J. Chem. Technol.
Biot.: Int. Res. Process, Environ.
Clean Technol., 77(11) (2002) 1246–1250.
- R.M. Narbaitz, J. McEwen, Electrochemical regeneration of
field spent GAC from two water treatment plants, Water Res.,
46(15) (2012) 4852–4860.
- J.B. Parsa, F. Jafari, Electrochemical regeneration of granular
activated carbon saturated with Rhodamine B in a fluidized
electrochemical reactor, Desal. Water Treat., 94 (2017) 174–180.
- M. Zhou, L. Lei, Electrochemical regeneration of activated carbon
loaded with p-nitrophenol in a fluidized electrochemical
reactor, Electrochim. Acta, 51(21) (2006) 4489–4496.
- O. Zanella, D. Bilibio, W.L. Priamo, I.C. Tessaro, L.A. Féris,
Electrochemical regeneration of phenol-saturated activated
carbon–proposal of a reactor, Environ. Technol., 38(5) (2017)
549–557.
- A. Azizi, M.R. Alavi Moghaddam, R. Maknoon, E. Kowsari,
Investigation of enhanced Fenton process (EFP) in color
and COD removal of wastewater containing Acid Red 18 by
response surface methodology: evaluation of EFP as post treatment,
Desal. Water Treat., 57(30) (2016) 14083–14092.
- L. Wang, Z. Chen, H. Wen, Z. Cai, C. He, Z. Wang, W. Yan,
Microwave assisted modification of activated carbons by
organic acid ammoniums activation for enhanced adsorption
of acid red 18, Powder Technol., 323 (2018) 230–237.
- O. De Nora, A. Nidola, P.M. Spaziante, Manganese dioxide
electrodes, Google Patents, 1978.
- K.P. Singh, S. Gupta, A.K. Singh, S. Sinha, Experimental
design and response surface modeling for optimization of
Rhodamine B removal from water by magnetic nanocomposite,
Chem. Eng. J., 165(1) (2010) 151–160.
- J.B. Parsa, M. Abbasi, Modeling and optimizing of sonochemical
degradation of Basic Blue 41 via response surface methodology,
Cent. Eur. J. Chem., 8(5) (2010) 1069–1077.
- B.K. Körbahti, A. Tanyolaç, Electrochemical treatment of simulated
textile wastewater with industrial components and
Levafix Blue CA reactive dye: Optimization through response
surface methodology, J. Hazard. Mater., 151(2–3) (2008) 422–
431.
- K.P. Singh, N. Basant, A. Malik, G. Jain, Modeling the performance
of “up-flow anaerobic sludge blanket” reactor
based wastewater treatment plant using linear and nonlinear
approaches—a case study, Anal. Chim. Acta, 658(1) (2010) 1–11.
- R. Meng, X. Yu, Investigation of ultrasound assisted regeneration
of Ni–bentonite with response surface methodology
(RSM), Appl. Clay Sci., 54(1) (2011) 112–117.
- B. Hameed, I. Tan, A. Ahmad, Optimization of basic dye removal
by oil palm fibre-based activated carbon using response surface
methodology, J. Hazard. Mater., 158(2–3) (2008) 324–332.
- F.N. Chianeh, J.B. Parsa, Electrochemical degradation of metronidazole
from aqueous solutions using stainless steel anode
coated with SnO2 nanoparticles: experimental design, J. Taiwan
Inst. Chem. Eng., 59 (2016) 424–432.
- J.B. Parsa, Z. Merati, M. Abbasi, Modeling and optimizing
of electrochemical oxidation of CI Reactive Orange 7 on the
Ti/Sb–SnO2 as anode via Response Surface Methodology, J.
Indust. Eng. Chem., 19(4) (2013) 1350–1355.
- X. Chen, F. Gao, G. Chen, Comparison of Ti/BDD and Ti/SnO2–Sb2O5 electrodes for pollutant oxidation, J. Appl. Electrochem.,
35(2) (2005) 185–191.