References

  1. Y. Chen, K. Liu, Preparation and characterization of nitrogen-doped TiO2/diatomite integrated photocatalytic pellet for the adsorption-degradation of tetracycline hydrochloride using visible light, Chem. Eng. J., 302 ( 2016) 682–696.
  2. H. Zhao, X. Liu, Z. Cao, Adsorption behavior and mechanism of chloramphenicols, sulfonamides, and non-antibiotic pharmaceuticals on multi-walled carbon nanotubes, J. Hazard. Mater., 310 (2016) 235.
  3. C.Q. Chen, J. Li, P.P. Chen, R. Ding, P.F. Zhang, X.Q. Li, Occurrence of antibiotics and antibiotic resistances in soils from wastewater irrigation areas in Beijing and Tianjin, China, Environ. Pollut., 193 (2014) 94–101.
  4. Y. Chen, N. Li, Y. Zhang, Novel low-cost Fenton-like layered Fe-titanate catalyst: preparation, characterization and application for degradation of organic colorants, J. Colloid Interf. Sci., 422 (2014) 9–15.
  5. R. Huang, Z. Fang, X. Fang, E.P. Tsang, Ultrasonic Fenton-like catalytic degradation of bisphenol a by ferroferric oxide (Fe2O4) nanoparticles prepared from steel pickling waste liquor, J. Colloid Interf. Sci., 436 (2014) 258–266.
  6. Y. Ghaffari, A. Mahvi, M. Alimohammadi, Evaluation of Fenton process efficiency in removal of tetracycline from synthetic wastewater, Mazandaran Univ. Med. Sci., 27 (2017) 291–305.
  7. R. Li, X. Jin, M. Megharaj, R. Naidu, Z. Chen, Heterogeneous Fenton oxidation of 2,4-dichlorophenol using iron-based nanoparticles and persulfate system, Chem. Eng. J., 264 (2015) 587.
  8. D.B. Wang, F.Y. Jia, H. Wang, F. Chen, Y. Fang, W.B. Dong, G.M. Zeng, Efficient adsorption and photocatalytic degradation of tetracycline by Fe-based MOFs, J. Colloid Interf. Sci., 519 (2018) 273–284.
  9. L. Liu, G. Zhang, L. Wang, T. Huang, L. Qin, Highly active S-modified ZnFe2O4 heterogeneous catalyst and its photo-Fenton behavior under UV À visible irradiation, Ind. Eng. Chem. Res., 50 (2011) 7219–7227.
  10. L. Truong-Phuoc, C. Pham-Huu, V. Da Costa, I. Janowska, Few-layered graphene-supported palladium as a highly efficient catalyst in oxygen reduction reaction, Chem. Commun., 50 (2014) 14433–14435.
  11. R. Molina, F. Martinez, J.A. Melero, D.H. Bremner, A.G. Chakinala, Mineralization of phenol by a heterogeneous ultrasound/Fe-SBa-15/H2O2, process: multivariate study by factorial design of experiments, Appl. Catal. B: Environ., 66 (2006) 198–207.
  12. A.J. Jafaria, B. Kakavandi, N. Jaafarzadeh, R.R. Kalantary, M. Ahmadi, Heterogeneous Fenton-like catalytic oxidation of tetracycline by AC@Fe3O4, as a heterogeneous persulfate activator: Adsorption and degradation studies, J. Ind. Eng. Chem., 45 (2017) 323–333.
  13. B. Kakavandi, A. Takdastan, N. Jaafarzadeh, M. Azizi, A. Mirzaei, A. Azari, Application of Fe3O4@C catalyzing heterogeneous UV-Fenton system for tetracycline removal with a focus on optimization by a response surface method, J. Photochem. Photobiol. A: Chem., 314 (2016) 178–188.
  14. A.A. Babaei, A. Azari, R.R. Kalantary, B. Kakavandi, Enhanced removal of nitrate from water using nZVI@MWCNTs composite: synthesis, kinetics and mechanism of reduction, Water Sci. Technol., 72 (2015) 1988–1999.
  15. M. Liu, C. Chen, J. Hu, X. Wu, X. Wang, X. Wu, X. Wang, Synthesis of magnetite/graphene oxide composite and application for cobalt(II) removal, J. Phys. Chem. C, 115 (2011) 25234–25240.
  16. P. Zhang, J.L. Gong, G.M. Zeng, C.H. Deng, H.C. Yang, H.Y. Liu, Cross-linking to prepare composite graphene oxide-framework membranes with high-flux for dyes and heavy metal ions removal, Chem. Eng. J., 322 (2017) 657–666.
  17. S.Q. Liu, B. Xiao, L.R. Feng, S.S. Zhou, Z.G. Chen, C.B. Liu, Graphene oxide enhances the Fenton-like photocatalytic activity of nickel ferrite for degradation of dyes under visible light irradiation, Carbon, 64 (2013) 197–206.
  18. W.S. Hummers, R.E. Offeman, Functionalized graphene and graphene oxide: materials synthesis and electronic applications , J. Am. Chem. Soc., 80 (1958) 1339.
  19. D.A. Dikin, S. Stankovich, E.J. Zimney, R.D. Piner, G.H. Dommett, G. Evmenenko, Preparation and characterization of graphene oxide paper, Nature, 448 (2016) 457–460.
  20. Y. Yang, X. Hu, Y. Zhao, Decontamination of tetracycline by thiourea-dioxide-reduced magnetic graphene oxide: effects of ph, ionic strength, and humic acid concentration, J. Colloid Interf. Sci., 495 (2017) 68–77.
  21. X.J. Hu, Y.G. Liu, H. Wang, Removal of Cu(II) ions from aqueous solution using sulfonated magnetic graphene oxide composite, Sep. Purif. Technol., 108 (2013) 189–195.
  22. H.W. Wang, Z.A. Hu, Y.Q. Chang, Y.L. Chen, Z.Y. Zhang, Y.Y. Yang, H.Y. Wu, Preparation of reduced graphene oxide/cobalt oxide composites and their enhanced capacitive behaviors by homogeneous incorporation of reduced graphene oxide sheets in cobalt oxide matrix, Mater. Chem. Phys., 130 (2011) 672–679.
  23. R.S. Dey, S. Hajra, R.K. Sahu, A rapid room temperature chemical route for the synthesis of graphene: metal-mediated reduction of graphene oxide, Chem. Commun., 48 (2012) 1787–1789.
  24. W. Wang, K. Xiao, L. Zhu, Long-term prognostic implications and therapeutic target role of hexokinase II in patients with nasopharyngeal carcinoma, Rsc Adv., 7 (2016) 21287–21297.
  25. E. Doustkhah, S. Rostamnia, Covalently bonded sulfonic acid magnetic graphene oxide: Fe3O4@GO-Pr-SO3H as a powerful hybrid catalyst for synthesis of indazolo phthalazine triones, J. Colloid Interf. Sci., 478 (2016) 280–287.
  26. M. Rathod, S. Haldar, S. Basha, Nanocrystalline cellulose for removal of tetracycline hydrochloride from water via biosorption: equilibrium, kinetic and thermodynamic studies, Ecol. Eng., 84 (2015) 240–249.
  27. L. Ludueña, D. Fasce, V.A. Alvarez, Nanocellulose from rice husk following alkaline treatment to remove silica, Bioresources, 6 (2011) 1440–1453.
  28. Y. Yang, J. Wang, J. Zhang, Exfoliated graphite oxide decorated by pdmaema chains and polymer particles, Langmuir Acs J. Surf. Colloids, 25 (2009) 11808–11814.
  29. J.G. Hiremath, N.S. Khamar, S.G. Palavalli, Paclitaxel loaded carrier based biodegradable polymeric implants: preparation and in vitro, characterization, Saudi Pharm. J., 21 (2013) 85–91.
  30. Z. Wu, H. Zhong, X. Yuan, H. Wang, L. Wang, X. Chen, G. Zeng, Y. Wu, Reply for comment on “adsorptive removal of methylene blue by rhamnolipid-functionalized graphene oxide from wastewater”, Water Res., 67 (2014) 330–344.
  31. Q. Wu, H. Zhang, L. Zhou, Synthesis and application of RGO/CoFe2O4, composite for catalytic degradation of methylene blue on heterogeneous Fenton-like oxidation, J. Taiwan Inst. Chem. Eng., 67 (2016) 484–494.
  32. S.S. Lin, M.D. Gurol, Catalytic decomposition of hydrogen peroxide on iron oxide: kinetics, mechanism, and implications, Environ. Sci. Technol., 32 (1998) 1417–1423.
  33. X.C. Wang, J.Y. Wu, H.P. Zhou, Synthesis, crystal structures and electrochemical properties of two new metal-centered ferrocene complexes, Sci. China Chem., 52 (2009) 930–993.
  34. B. Yang, Z. Tian, L. Zhang, Enhanced heterogeneous Fenton degradation of methylene blue by nanoscale zero valent iron (nzvi) assembled on magnetic Fe3O4/reduced graphene oxide, J. Water Proc. Eng., 5 (2015) 101–111.
  35. W.X. Wang, K.J. Xiao, L. Zhu, Y.R. Yin, Z.M. Wang, Graphene oxide supported titanium dioxide and ferroferric oxide hybrid, a magnetically separable photocatalyst with enhanced photocatalytic activity for tetracycline hydrochloride degradation, RSC Adv., 7 (2017) 21287–21297.
  36. M.A. Voinov, J.O. Sosa Pagán, E. Morrison, T.I. Smirnova, A.I. Smirnov, Surface-mediated production of hydroxyl radicals as a mechanism of iron oxide nanoparticle biotoxicity, J. Am. Chem. Soc., 133 (2011) 35–41.
  37. L.J. Xu , J.L. Wang, A heterogeneous Fenton-like system with nanoparticulate zero-valent iron for removal of 4-chloro-3-methyl phenol, J. Hazard. Mater., 186 (2011) 256–264.
  38. J. Yan, M. Lei, L. Zhu, M.N. Anjum, J. Zou, H. Tang, Degradation of sulfamonomethoxine with Fe3O4 magnetic nanoparticles as heterogeneous activator of persulfate, J. Hazard. Mater., 186 (2011) 1398.
  39. W.G. Kuo, Decolorizing dye wastewater with Fenton’s reagent, Water Res., 26 (1992) 881–886.
  40. X.R. Xu, X.Z. Li, Degradation of azo dye orange g in aqueous solutions by persulfate with ferrous ion , Sep. Purif. Technol., 72 (2010) 105–111.
  41. H. Hassan, B.H. Hameed, Fe–clay as effective heterogeneous Fenton catalyst for the decolorization of reactive blue 4, Chem. Eng. J., 171 (2011) 912–918.
  42. Y. Liu, H. Zhang, Y.F. Lu, J. Wu, B.F. Xin, A simple method to prepare g-C3N4/Ag-polypyrrole composites with enhanced visible-light photo-catalytic activity, Catal. Commun., 87 (2016) 41–44.
  43. C. Bao, H. Zhang, L.C. Zhou, Y.M. Shao, J.J. Ma, Q. Wu, Preparation of copper doped magnetic porous carbon for removal of methylene blue by a heterogeneous Fenton-like reaction, RSC Adv., 5 (2015) 72423–72432.
  44. J.K. Du, J.G. Bao, X.Y. Fu, C.H. Lu, S.H. Kim, Mesoporous sulfur-modified iron oxide as an effective Fenton-like catalyst for degradation of bisphenol a, Appl. Catal. B: Environ., 184 (2016) 132–141.
  45. R.J. Wang, X.Y. Liu, R.H. Wu, B.W. Yu, TiO2-doped Fe3O4 nanoparticles as high-performance Fenton-like catalyst for dye decoloration, RSC Adv., 6 (2016) 8594–8600.
  46. K. Dutta, S. Mukhopadhyay, S. Bhattacharjee, B. Chaudhuri, Chemical oxidation of methylene blue using a Fenton-like reaction, J. Hazard. Mater., 84 (2001) 57–71.
  47. G.V. Buxton, C.L. Greenstock, W.P. Helman, A.B. Ross, Critical review of rate constants for reactions of hydrated electrons chemical kinetic data base for combustion chemistry. part 3: propane, J. Phys. Chem. Ref. Data, 17 (1988) 513–886.
  48. A. Long, Y. Lei, H. Zhang, Degradation of toluene by a selective ferrous ion activated persulfate oxidation process, Ind. Eng. Chem. Res., 53 (2014) 1033–1039.
  49. C. Wang, J. Kang, H.Q. Sun, H.M. Ang, M.O. Tad, S.B. Wang, One-pot synthesis of N-doped graphene for metal-free advanced oxidation processes, Carbon, 102 (2016) 279–287.
  50. W. Songlin, Z. Ning, Removal of carbamazepine from aqueous solution using sono-activated persulfate process, Ultrason. Sonochem., 29 (2016) 156–162.
  51. W. Liu, J. Ma, C. Shen, Y. Wen, W. Liu, A ph-responsive and magnetically separable dynamic system for efficient removal of highly dilute antibiotics in water, Water Res., 90 (2016) 24–33.
  52. J.H. Ramirez, C.A. Costa, L.M. Madeira, G. Mata, M.A. Vicente, M.L. Rojas-Cervantes, Fenton-like oxidation of orange II solutions using heterogeneous catalysts based on saponite clay, Appl. Catal. B: Environ., 71 (2007) 44–56.
  53. J. Deng, J. Jiang, Y. Zhang, X. Lin, C. Du, Y. Xiong, FeVO4 as a highly active heterogeneous Fenton-like catalyst towards the degradation of orange II, Appl. Catal. B: Environ., 84 (2008) 468–473.
  54. S.S. Lin, M.D. Gurol, Catalytic decomposition of hydrogen peroxide on ironoxide: kinetics, mechanism, and implications, Environ. Sci. Technol., 32 (1998) 1417–1423.
  55. W.P. Kwan, B.M. Voelker, Decomposition of hydrogen peroxide and organic compounds in the presence of dissolved iron and ferrihydrite, Environ. Sci. Technol., 36 (2002) 1467–1476.