References

  1. L. Cornejo, J. Acarapi, U. Mella, Cuenca de Camarones: identificación y caracterización de fuentes que condicionan la calidad de las aguas superficiales: rol del Tranque Caritaya. Gobierno de Chile, Ministerio de Obras Públicas Dirección General de Aguas, Chile, 2009.
  2. J. Bundschuh, B. Nath, P. Bhattacharya, C-W. Liu, M.A. Armienta, M.V. Moreno, D. Lopez, J.-S. Jean, L. Cornejo, L.F. Lauer, A. Tenuta, Arsenic in the human food chain: the Latin American perspective, Sci. Total Environ., 429 (2012) 92–106.
  3. B.D. Bhattrai, S. Kwak, W. Heo, Assessment of water quality variations under non-rainy and rainy conditions by principal component analysis techniques in Lake Doam watershed, Korea, J. Ecol. Environ., 38 (2015) 145–156.
  4. S.C. Nishanthiny, M. Thushyanthy, T. Barathithasan, S. Saravanan, Irrigation water quality based on hydrochemical analysis, Jaffna, Sri Lanka, American-Eurasian J. Agric. Environ. Sci., 7 (2010) 100–102.
  5. V. Chaudhary, S. Satheeshkumar, Assessment of groundwater quality for drinking and irrigation purposes in arid areas of Rajasthan, India, Appl. Water Sci., 8 (2018) 218.
  6. A.M. Al-Bassam, Y.A. Al-Rumikhani, Integrated hydrochemical method of water quality assessment for irrigation in arid areas: application to the Jilh aquifer, Saudi Arabia, J. African Earth Sci., 36(4) (2003) 345–356.
  7. K.P. Singh, A. Malik, D. Mohana, S. Sinhab, Multivariate statistical techniques for the evaluation of spatial and temporal variations in water quality of Gomti River (India)—a case study, Water Res., 38 (2004) 3980–3992.
  8. B. Zhang, X. Song, Y. Zhang, D. Han, Ch. Tang, Y. Yu, Y. Ma, Hydrochemical characteristics and water quality assessment of surface water and groundwater in Songnen plain, Northeast China. Water Res., 46 (2012) 2737–2748.
  9. K.D. Brahman, T. Gul Kazi, H.I. Afridi, S. Naseem, S.S. Arain, N. Ullah, Evaluation of high levels of fluoride, arsenic species and other physicochemical parameters in underground water of two sub districts of Tharparkar, Pakistan: A multivariate study, Water Res., 47 (2013) 1005–1020.
  10. J. Li, Y. Wang, X. Xie, C. Su, Hierarchical cluster analysis of arsenic and fluoride enrichments in groundwater from the Datong basin, Northern China, J. Geochem. Explor., 118 (2012) 77–78.
  11. C. Güller, M.A. Kurt, M. Alpaslan, C. Akbulut, Assessment of the impact of anthropogenic activities on the groundwater hydrology and chemistry in Tarsus coastal plain (Mersin, SE Turkey) using fuzzy clustering, multivariate statistics and GIS techniques, J. Hydrology, 414–415 (2012) 435–451.
  12. J.S. Horsburgh, A.S. Jones, D.K. Stevens, D.G. Tarboton, N.O. Mesner, A sensor network for high-frequency estimation of water quality constituent fluxes using surrogates, Environ. Modell. Soft., 25 (2010) 1031–1044.
  13. C. Neal, B. Reynolds, P. Rowland, D. Norris, J.W. Kirchner, M. Neal, D. Sleep, A. Lawlor, C. Woods, S. Thacker, H. Guyatt, C. Vincent, K. Hockenhull, H. Wickham, S. Harman, L. Armstrong, High-frequency water quality time series in precipitation and streamflow: From fragmentary signals to scientific challenge, Sci. Total Environ., 434 (2012) 3–12.
  14. L.K. Pandey, J. Park, D.H. Son, W. Kim, M. SaifulIslam, S. Choi, H. Lee, T. Han, Assessment of metal contamination in water and sediments from major rivers in South Korea from 2008 to 2015, Sci. Total Environ., 651 (2019) 323–333.
  15. Ministerio de Agricultura, CNR, Diagnóstico de la subcuenta aportante al Embalse Caritaya Región de Arica y Parinacota, Informe Final, 2014, Vol 1 págs: 1–234.
  16. L. Cornejo-Ponce, J. Acarapi-Cartes, M. Arenas-Herrera, Development and validation of a method for simultaneous arsenic, antimony, selenium and mercury determination in plants by energy dispersive X ray fluorescence spectrometry, Interciencia., 43 (2018) 426.
  17. H. Lan, J. Li, M. Sun, X. An, Ch. Hu, R. Liu, H. Liu, J. Qu, Efficient conversion of dimethylarsinate into arsenic and its simultaneous adsorption removal over FeCx/N-doped carbon fiber composite in an electro-Fenton process, Water Res., 100 (2016) 57–64.
  18. S. Ghosh (Nath), A. Debsarkar, A. Dutta, Technology alternatives for decontamination of arsenic-rich groundwater—A critical review, Environ. Technol. Innov., (2018) 9–34.
  19. Z.A. ALOthman, R. Ali, M. Naushad, Hexavalent chromium removal from aqueous medium by activated carbon prepared from peanut shell: Adsorption kinetics, equilibrium and thermodynamic studies, Chem. Eng. J., 184 (2012) 238–247.
  20. R. Saravanan, S. Agarwal, V.K. Gupta, M.M. Khan, F. Gracia, E. Mosquera, V. Narayanan, A. Stephen, Line defect Ce3+ induced Ag/CeO2/ZnO nanostructure for visible-light photocatalytic activity, J. Photochem. Photobiol. A: Chemistry, 353 (2018) 499–506.
  21. R. Saravanan, J. Aviles, F. Gracia E. Mosquera, V.K. Gupta, Crystallinity and lowering band gap induced visible light photocatalytic activity of TiO2/CS (chitosan) nanocomposites, Int. J. Bio. Macromol., 109 (2018) 1239–1245.
  22. M. Naushad, T. Ahamad, B.M. Al-Maswari, A.A. Alqadami, SM. Alshehri, Nickel ferrite bearing nitrogen-doped mesoporous carbon as efficient adsorbent for the removal of highly toxic metal ion from aqueous medium, Chem. Eng. J., 330 (2017) 1351–1360.
  23. M. Naushad, Surfactant assisted nano-composite cation exchanger: Development, characterization and applications for the removal of toxic Pb2+ from aqueous medium, Chem. Eng. J., 235 (2014) 100–108.
  24. R. Saravanan, D. Manoj, J. Qin, Mu. Naushad, F. Gracia, A.F. Lee, M.M. Khan, M.A. Gracia-Pinilla, Mechanothermal synthesis of Ag/TiO2 for photocatalytic methyl orange degradation and hydrogen production, Process Safe. Environ. Protect., 120 (2018) 339–347.
  25. M. Naushad, Z.A. Alothman, Separation of toxic Pb2+ metal from aqueous solution using strongly acidic cation-exchange resin: analytical applications for the removal of metal ions from pharmaceutical formulation, Desal. Water Treat., 53 (2015) 2158–2166.
  26. M. Naushad, T. Ahamad, G. Sharma, M.M. Alam, Z.A. ALOthman, S.M. Alshehri, A.A. Ghfar, Synthesis and characterization of a new starch/SnO2 nanocomposite for efficient adsorption of toxic Hg2+ metal ion, Chem. Eng. J., 300 (2016) 306–316.
  27. G. Sharma, Mu. Naushad, D. Pathania, A. Mittal, G.E. El-Desoky, Modification of Hibiscus cannabinus fiber by graft copolymerization: application for dye removal, Desal. Water Treat., 55 (2015) 3114–3121.
  28. A.B. Albadarin, M.N. Collins, Mu. Naushad, S. Shirazian, Activated lignin–chitosan extruded blends for efficient adsorption of methylene blue, Chem. Eng. J., 307 (2017) 264–272.
  29. E. Daneshvar, A. Vazirzadeh, A. Niazi, M. Kousha, M. Naushad, A. Bhatnagar, Desorption of Methylene blue dye from brown macroalga: Effects of operating parameters, isotherm study and kinetic modeling, J. Cleaner Prod., 152 (2017) 443–453.
  30. K. Deepa, C. Prasad, N.V.V. Jyothi, Mu. Naushad, S. Rajendran, S. Karlapudi, S. Himagirish Kumar, Adsorptive removal of Pb(II) metal from aqueous medium using biogenically synthesized and magnetically recoverable core-shell structured AM@Cu/Fe3O4 nanocomposite, Desal. Water Treat., 111 (2018) 278–285.
  31. A.A. Al-Kahtani, S.M. Alshehri, M. Naushada, T. Ruksana, Ahamad, Fabrication of highly porous N/S doped carbon embedded with ZnS as highly efficient photocatalyst for degradation of bisphenol, Int. J. Bio. Macromol., 121 (2019) 415–423.
  32. E. Tréllez, M. Mamani, F. Valenzuela, C. Vera, Guía educación y sensibilización ciudadana para la conservación y uso sustentable de los humedales de la región de Tarapacá, Centro de Estudios de Humedales (CEH) 2011 págs: 49–53.
  33. M. Ahumada, L. Faundez, Guía descriptiva de los sistemas vegetacionales azonales hídricos terrestre de la Eco región Altiplánica (SVAHT). Ministerio de Agricultura de Chile, Servicio Agrícola y Ganadero, Santiago 2009 pág: 118.
  34. G. Henríquez, Antecedentes climáticos de la XV Región de Arica y Parinacota: Caracterización de humedales alto andinos para una gestión sustentable de las actividades productivas del sector norte del país. Centro de Información de Recursos Naturales (CIREN) Biblioteca Digital. 2013. Available: http://bibliotecadigital.ciren.cl/bitstream/handle/123456789/6800/CIREN-HUMED035.pdf.
  35. L. Cornejo, H. Lienqueo, M. Arenas, J. Acarapi, D. Contreras, J. Yáñez, H. Mansilla, In field arsenic removal from natural water by zero-valent iron assisted by solar radiation, Environ. Pollut., 156 (2008) 827–831.
  36. APHA, AWWA, and WEF. Standard Methods for the Examination of Water and Wastewater, 23rd ed. American Public Health Association, American Water Works Association, Water Environment Federation. 2017.
  37. ROPRO software reaches version 8.0. Membrane Technology. 12 (2008) 3–4.
  38. M. Ormachea, J.L. Garcia, P. Bhattacharya, O. Sracek, M. Garcia, C. Kohfahl, J. Quintanilla, J. Hornero, J. Bundschuh, Geochemistry of naturally occurring arsenic in groundwater and surface-water in the southern part of the Poopó Lake basin, Bolivian Altiplano, Groundwater Sustain. Develop., 2(3) (2016) 104–116.
  39. A.M.S. Abd El-Gawad, A.S. Helaly, M.S.E. Abd El-Latif, Application of geoelectrical measurements for detecting the ground-water seepage in clay quarry at Helwan, southeastern Cairo, Egypt, NRIAG J. Astron. Geophys., 7 (2018) 377–389.
  40. C. Güller, G. Thyne, J. McCray, K. Turner, Evaluation of graphical and multivariate statistical methods for classification of water chemistry data, Hydrogeology J., 10 (2002) 455–474.
  41. P. Ravikumar, R.K. Somashekar, Assessment and modelling of groundwater quality data and evaluation of their corrosiveness and scaling potential using environmetric methods in Bangalore South Taluk, Karnataka State, India, Water Resour., 39 (2012) 446–473.
  42. K. Nosrati, M. Van Den Eeckhaut, Assessment of groundwater quality using multivariate statistical techniques in Hashtgerd Plain, Iran. Environ Earth Sci., 65 (2012) 331–344
  43. E.J.K. Singh, A. Gupta, N.R. Singh, Groundwater quality in Imphal West district, Manipur, India, with multivariate statistical analysis of data, Environ. Sci. Pollut. Res., 20 (2013) 2421–2434.
  44. K. Zeinalzadeh, E. Rezaei, Determining spatial and temporal changes of surface water quality using principal component analysis, J. Hydrology: Regional Studies, 13 (2017) 1–10.
  45. Piruette 4.5, Comprehensive chemometrics modeling software, Infometrix Inc.
  46. H. Wold, Estimation of principals components and related models by iterative least squares, in P. R. Krishnaiah, ed., Multivariate Analysis New York, (1966) 391–420.
  47. Y. Miyashita, H. Katsumi, Sasaki, Shin-Ichi, Comments on the NIPALS algorithm, J. Chemometrics, 4 (1990) 97–100.
  48. L. Figueroa, Arica inserta en un ambiente arsenical: el arsénico en el ambiente que la afecta y 45 siglos de arsenicismo crónico. Ediciones Universidad de Tarapacá, Chile, 2001 págs. 5–25.
  49. INN. NCh409/1:2005. Drinking water - Part 1: Requirements. Instituto Nacional de Normalización. Santiago, Chile.
  50. INN. NCh1333:1987. Water quality requirements for different uses. Instituto Nacional de Normalización. Santiago, Chile.
  51. Council Directive 67/548/EEC. On the approximation of the laws, regulations and administrative provisions relating to the “Classification, packaging and labelling of dangerous substances. Official Journal of the European Communities. 2015.
  52. F. Queirolo, S. Stegen, J. Mondaca, R. Cortés, R. Rojas, C. Contreras, Total arsenic, lead, cadmium, copper and zinc in some salt rivers in the northern Andes of Antofagasta Chile, Sci. Total Environ., 255 (2000) 85–95.
  53. M. Walker, R.L. Seiler, M. Meinert, Effectiveness of household reverse-osmosis systems in a Western U.S. region with high arsenic in groundwater, Sci. Total Environ., 389 (2008) 245–252.
  54. A. Figoli, A. Cassano, A. Criscuoli, M. Salatul, I. Mozumder, M. Uddin, M. Islam, E. Drioli, Influence of operating parameters on the arsenic removal by nanofiltration, Water Res., 44 (2010) 97–104.
  55. A.M. Donia, A.A. Atia, D. Mabrouk, Fast kinetic and efficient removal of As (V) from aqueous solution using anion exchange resins, J. Hazard. Mater., 191 (2011) 1–7.
  56. J. Giménez, J. de Pablo, M. Martínez, M. Rovira, C. Valderrama, Reactive transport of arsenic (III) and arsenic (V) on natural hematite: Experimental and modeling, J. Colloid Interface Sci., 348 (2010) 293–297.
  57. F. Lara, L. Cornejo, J. Yáñez, J. Freer, H. Mansilla, Solar-light assisted removal of arsenic from natural waters: effect of iron and citrate concentrations, J. Chem, Technol. Biotechnol., 81 (2006) 1282–1287.
  58. Guidelines for Drinking-Water Quality. 4th ed. World Health Organization. Geneva, Switzerland, 2011, 178 p.
  59. Council Directive 98/83/EC, 1998.The quality of water intended for human consumption, Official Journal of the European Communities.