References

  1. R.R. Kalantary, M. Rahmatinia, M. Moradi, Data on modeling of UV/Na2S2O8/FeS2 process in amoxicillin removal using Box-Behnken methodology, Data in Brief, 19 (2018) 1810–1815.
  2. E. Kattel, B. Kaur, M. Trapido, N. Dulova, Persulfate-based photodegradation of a beta-lactam antibiotic amoxicillin in various water matrices, Environ. Technol., (2018) 1–9.
  3. A. Mohammadi, M. Kazemipour, H. Ranjbar, R.B. Walker, M. Ansari, Amoxicillin removal from aqueous media using multiwalled carbon nanotubes, Fullerenes, Fuller. Nanotub. Car. N., 23 (2015) 165–169.
  4. R. Andreozzi, M. Canterino, R. Marotta, N. Paxeus, Antibiotic removal from wastewaters: the ozonation of amoxicillin, J. Hazard. Mater., 122 (2005) 243–250.
  5. N. Olama, M. Dehghani, M. Malakootian, The removal of amoxicillin from aquatic solutions using the TiO2/UV-C nanophotocatalytic method doped with trivalent iron, Appl. Water. Sci., 8 (2018) 97.
  6. K. Yaghmaeian, G. Moussavi, A. Alahabadi, Removal of amoxicillin from contaminated water using NH4Cl-activated carbon: Continuous flow fixed-bed adsorption and catalytic ozonation regeneration, Chem. Eng. J., 236 (2014) 538–544.
  7. R. Kıdak, Ş. Doğan, Medium-high frequency ultrasound and ozone based advanced oxidation for amoxicillin removal in water, Ultrason. Sonochem., 40 (2018) 131–139.
  8. A. Boukhelkhal, O. Benkortbi, M. Hamadache, N. Ghalem, S. Hanini, A. Amrane, Adsorptive removal of amoxicillin from wastewater using wheat grains: equilibrium, kinetic, thermodynamic studies and mass transfer, Desal. Water Treat., 57 (2016) 27035–27047.
  9. Y. Vasseghian, E.N. Dragoi, Modeling and optimization of acid blue 193 removal by UV and peroxydisulfate process, J. Environ. Eng., 144 (2018) 06018003.
  10. K. Sharafi, M. Pirsaheb, V.K. Gupta, S. Agarwal, M. Moradi, Y. Vasseghian, E.N. Dragoi, Phenol adsorption on scoria stone as adsorbent-application of response surface method and artificial neural networks, J. Mol. Liq., 274 (2018) 699–714.
  11. M. Moradi, A.M. Mansouri, N. Azizi, J. Amini, K. Karimi, K. Sharafi, Adsorptive removal of phenol from aqueous solutions by copper (cu)-modified scoria powder: process modeling and kinetic evaluation, Desal. Water Treat., 57 (2016) 11820–11834.
  12. M. Moradi, M. Heydari, M. Darvishmotevalli, K. Karimyan, V.K. Gupta, Y. Vasseghian, H. Sharafi, Kinetic and modeling data on phenol removal by iron-modified scoria powder (FSP) from aqueous solutions, Data in Brief, 20 (2018) 957–968.
  13. M. Moradi, M. Soltanian, M. Pirsaheb, K. Sharafi, S. Soltanian, A. Mozafari, The efficiency study of pumice powder to lead removal from the aquatic environment: isotherms and kinetics of the reaction, J. Mazand. Univ. Med. Sci. (JMUMS), 23 (2014) 64–75.
  14. M. Moradi, M. Fazlzadehdavil, M. Pirsaheb, Y. Mansouri, T. Khosravi, K. Sharafi, Response surface methodology (RSM) and its application for optimization of ammonium ions removal from aqueous solutions by pumice as a natural and low cost adsorbent, Arch. Environ. Prot., 42 (2016) 33–43.
  15. H. Arfaeinia, H. Rezaei, K. Sharafi, M. Moradi, H. Pasalari, S. Hashemi, Application of ozone/magnetic graphene oxide for degradation of diazinon pesticide from aqueous solutions, Desal. Water Treat., 107 (2018) 127–135.
  16. S. Su, W. Guo, C. Yi, Y. Leng, Z. Ma, Degradation of amoxicillin in aqueous solution using sulphate radicals under ultrasound irradiation, Ultrason. Sonochem., 19 (2012) 469–474.
  17. C. Tan, N. Gao, Y. Deng, L. Li, J. Deng, S. Zhou, Kinetic oxidation of antipyrine in heat-activated persulfate, Desal. Water Treat., 53 (2015) 263–271.
  18. B. Li, L. Li, K. Lin, W. Zhang, S. Lu, Q. Luo, Removal of 1, 1, 1-trichloroethane from aqueous solution by a sono-activated persulfate process, Ultrason. Sonochem., 20 (2013) 855–863.
  19. Y.Q. Gao, N.Y. Gao, Y. Deng, D.Q. Yin, Y.S. Zhang, Degradation of florfenicol in water by UV/Na2S2O8 process, Environ. Sci. Pollut. Res., 22 (2015) 8693–8701.
  20. M. Zhang, X. Chen, H. Zhou, M. Murugananthan, Y. Zhang, Degradation of p-nitrophenol by heat and metal ions co-activated persulfate, Chem. Eng. J., 264 (2015) 39–47.
  21. X. Xiong, B. Sun, J. Zhang, N. Gao, J. Shen, J. Li, X. Guan, Activating persulfate by Fe0 coupling with weak magnetic field: performance and mechanism, Water Res., 62 (2014) 53–62.
  22. C. Liang, Y.Y. Guo, Y.C. Chien, Y.J. Wu, Oxidative degradation of MTBE by pyrite-activated persulfate: proposed reaction pathways, Ind. Eng. Chem. Res., 49 (2010) 8858–8864.
  23. H. Lee, H.J. Lee, J. Jeong, J. Lee, N.B. Park, C. Lee, Activation of persulfates by carbon nanotubes: Oxidation of organic compounds by nonradical mechanism, Chem. Eng. J., 266 (2015) 28–33.
  24. H. Chen, K.C. Carroll, Metal-free catalysis of persulfate activation and organic-pollutant degradation by nitrogen-doped graphene and aminated graphene, Environ. Pollut., 215 (2016) 96–102.
  25. X. Duan, H. Sun, S. Wang, Metal-free carbocatalysis in advanced oxidation reactions, Acc. Chem. Res., 51 (2018) 678–687.
  26. A. Ahmad, X. Gu, L. Li, S. Lv, Y. Xu, X. Guo, Efficient degradation of trichloroethylene in water using persulfate activated by reduced graphene oxide-iron nanocomposite, Environ. Sci. Pollut. Res., 22 (2015) 17876–17885.
  27. F. Sepyani, R.D.C. Soltani, S. Jorfi, H. Godini, M. Safari, Implementation of continuously electro-generated Fe3O4 nanoparticles for activation of persulfate to decompose amoxicillin antibiotic in aquatic media: UV254 and ultrasound intensification, J. Environ. Manage., 224 (2018) 315–326.
  28. J. Yan, Y. Chen, L. Qian, W. Gao, D. Ouyang, M. Chen, Heterogeneously catalyzed persulfate with a CuMgFe layered double hydroxide for the degradation of ethylbenzene, J. Hazard. Mater., 338 (2017) 372–380.
  29. J. Yan, M. Lei, L. Zhu, M.N. Anjum, J. Zou, H. Tang, Degradation of sulfamonomethoxine with Fe3O4 magnetic nanoparticles as heterogeneous activator of persulfate, J. Hazard. Mater., 186 (2011) 1398–1404.
  30. C. Tan, N. Gao, Y. Deng, J. Deng, S. Zhou, J. Li, X. Xin, Radical induced degradation of acetaminophen with Fe3O4 magnetic nanoparticles as heterogeneous activator of peroxymonosulfate, J. Hazard. Mater., 276 (2014) 452–460.
  31. X.B. Gong, Degradation of dye wastewater by persulfate activated with Fe3O4/grapheme nanocomposite, J. Water. Reuse. Desal., 6 (2016) 553–561.
  32. R.R. Kalantary, A. Azari, A. Esrafili, K. Yaghmaeian, M. Moradi, K. Sharafi, The survey of Malathion removal using magnetic graphene oxide nanocomposite as a novel adsorbent: thermodynamics, isotherms, and kinetic study, Desal. Water Treat., 57 (2016) 28460–28473.
  33. L. Yu, J. Chen, Z. Liang, W. Xu, L. Chen, D. Ye, Degradation of phenol using Fe3O4-GO nanocomposite as a heterogeneous photo-Fenton catalyst, Sep. Purif. Technol., 171 (2016) 80–87.
  34. C. Tan, N. Gao, Y. Deng, J. Deng, S. Zhou, J. Li, X. Xin, Radical induced degradation of acetaminophen with Fe3O4 magnetic nanoparticles as heterogeneous activator of peroxymonosulfate, J. Hazard. Mater., 276 (2014) 452–460.
  35. J. Hur, J. Shin, J. Yoo, Y.-S. Seo, Competitive adsorption of metals onto magnetic graphene oxide: comparison with other carbonaceous adsorbents, Sci. World. J., 2015 (2015).
  36. G. Xie, P. Xi, H. Liu, F. Chen, L. Huang, Y. Shi, F. Hou, Z. Zeng, C. Shao, J. Wang, A facile chemical method to produce superparamagnetic graphene oxide–Fe3O4 hybrid composite and its application in the removal of dyes from aqueous solution, J. Mater. Chem., 22 (2012) 1033–1039.
  37. E. Kazemi, S. Dadfarnia, A.M.H. Shabani, Dispersive solid phase microextraction with magnetic graphene oxide as the sorbent for separation and preconcentration of ultra-trace amounts of gold ions, Talanta, 141 (2015) 273–278.
  38. J. Su, M. Cao, L. Ren, C. Hu, Fe3O4–graphene nanocomposites with improved lithium storage and magnetism properties, J. Phys. Chem. C., 115 (2011) 14469–14477.
  39. M.A. Farghali, T.A. El-Din, A.M. Al-Enizi, R.M. El-Bahnasawy, Graphene/magnetite nanocomposite for potential environmental application, Int. J. Electrochem. Sci., 10 (2015) 529–537.
  40. Y.L. Dong, H.G. Zhang, Z.U. Rahman, L. Su, X.J. Chen, J. Hu, X.G. Chen, Graphene oxide–Fe3O4 magnetic nanocomposites with peroxidase-like activity for colorimetric detection of glucose, Nanoscale, 4 (2012) 3969–3976.
  41. J. Lu, X. Jiao, D. Chen, W. Li, Solvothermal synthesis and characterization of Fe3O4 and γ-Fe2O3 nanoplates, J. Phys. Chem. C, 113 (2009) 4012–4017.
  42. A. Rastogi, S.R. Al-Abed, D.D. Dionysiou, Sulfate radical-based ferrous–peroxymonosulfate oxidative system for PCBs degradation in aqueous and sediment systems, Appl. Catal. B, 85 (2009) 171–179.
  43. M. Ahmadi, F. Ghanbari, M. Moradi, Photocatalysis assisted by peroxymonosulfate and persulfate for benzotriazole degradation: effect of pH on sulfate and hydroxyl radicals, Wat. Sci. Tech., 72 (2015) 2095–2102.
  44. P. Zhou, J. Zhang, J. Liu, Y. Zhang, J. Liang, Y. Liu, B. Liu, W. Zhang, Degradation of organic contaminants by activated persulfate using zero valent copper in acidic aqueous conditions, RSC Adv., 6 (2016) 99532–99539.
  45. M. Moradi, R.R. Kalantary, A. Esrafili, A.J. Jafari, M. Gholami, Visible light photocatalytic inactivation of Escherichia coli by natural pyrite assisted by oxalate at neutral pH, J. Mol. Liq., 248 (2017) 880–889.
  46. M. Samarghandi, J. Mehralipour, G. Azarin, K. Godini, A. Shabanlo, Decomposition of sodium dodecylbenzene sulfonate surfactant by electro/Fe2+-activated persulfate process from aqueous solutions, Global Nest. J., 19 (2017) 115–121.
  47. G.P. Anipsitakis, D.D. Dionysiou, Radical generation by the interaction of transition metals with common oxidants, Environ. Sci. Technol., 38 (2004) 3705–3712.
  48. M. Kermani, F. Mohammadi, B. Kakavandi, A. Esrafili, Z. Rostamifasih, Simultaneous catalytic degradation of 2,4-D and MCPA herbicides using sulfate radical-based heterogeneous oxidation over persulfate activated by natural hematite (α-Fe2O3/PS), J. Phys. Chem. Solids, 117 (2018) 49–59.
  49. X. Duan, Z. Ao, L. Zhou, H. Sun, G. Wang, S. Wang, Occurrence of radical and nonradical pathways from carbocatalysts for aqueous and nonaqueous catalytic oxidation, Appl. Catal. B Environ., 188 (2016) 98–105.
  50. J. Yan, W. Gao, M. Dong, L. Han, L. Qian, C.P. Nathanail, M. Chen, Degradation of trichloroethylene by activated persulfate using a reduced graphene oxide supported magnetite nanoparticle, Chem. Eng. J., 295 (2016) 309–316.
  51. Y. Jingchun, M. Lei, L. Zhu, M.N. Anjum, J. Zou, H. Tang, Degradation of sulfamonomethoxine with Fe3O4 magnetic nanoparticles as heterogeneous activator of persulfate, J. Hazard. Mater., 186 (2011) 1398–1404.
  52. C. Hao, K.C. Carroll, Metal-free catalysis of persulfate activation and organic-pollutant degradation by nitrogen-dopedgraphene and aminated grapheme, Environ. Pollut., 215 (2016) 96–102.
  53. A. Ledjeri, I. Yahiaoui, F. Aissani-Benissad, The electro/Fe3+/peroxydisulfate (PDS) process coupled to activated sludge culture for the degradation of tetracycline, J. Environ. Manage., 184 (2016) 249–254.
  54. W. Guo, S. Su, C. Yi, Z. Ma, Degradation of antibiotics amoxicillin by Co3O4-catalyzed peroxymonosulfate system, Environ. Prog. Sustain. Energy, 32 (2013) 193–197.
  55. X. He, S.P. Mezyk, I. Michael, D. Fatta-Kassinos, D. Dionysiou, Degradation kinetics and mechanism of β-lactam antibiotics by the activation of H2O2 and Na2S2O8 under UV-254 nm irradiation, J. Hazard. Mater., 279 (2014) 375–383.