References

  1. P.O. Boamah, Y. Huang, M.Q. Hua, Q. Zhang, J.B. Wu, J. Onumah, L.K. Sam-Amoah, P.O. Boamah, Sorption of heavy metal ions onto carboxylate chitosan derivatives - A mini-review, Ecotox. Environ. Safe., 116 (2015) 113–120.
  2. V.L. Colin, L.B. Villegas, C.M. Abate, Indigenous microorganisms as potential bioremediators for environments contaminated with heavy metals, Int. Biodeter. Biodegr., 69 (2012) 28–37.
  3. F. Ouyang, H.Y. Zhai, M. Ji, H.Y. Zhang, Z. Dong, Physiological and transcriptional responses of nitrifying bacteria exposed to copper in activated sludge, J. Hazard. Mater., 301 (2016) 172–178.
  4. W. Chouyyok, Y. Shin, J. Davidson, W.D. Samuels, N.H. Lafemina, R.D. Rutledge, G.E. Fryxell, T. Sangvanich, W. Yantasee, Selective removal of copper(II) from natural waters by nanoporous sorbents functionalized with chelating diamines, Environ. Sci. Technol., 44(16) (2010) 6390–6395.
  5. V. Ochoa-Herrera, G. León, Q. Banihani, J.A. Field, R. Sierra-Alvarez, Toxicity of copper (II) ions to microorganisms in biological wastewater treatment systems, Sci. Total Environ., 412–413 (2011) 380–385.
  6. A. Cabrero, S. Fernandez, F. Mirada, J. Garcia, Effects of copper and zinc on the activated sludge bacteria growth kinetics, Water. Res., 32(5) (1998) 1355–1362.
  7. P. Principi, F. Villa, M. Bernasconi, E. Zanardini, Metal toxicity in municipal wastewater activated sludge investigated by multivariate analysis and in situ hybridization, Water. Res., 40(1) (2006) 99–106.
  8. Q.Q. Zhang, Z.Z. Zhang, Q. Guo, Q.Q. Chen, R.C. Jin, X.Y. Jia, Variation in the performance and sludge characteristics of anaerobic ammonium oxidation inhibited by copper, Sep. Purif. Technol., 142 (2015) 108–115.
  9. M. Rycewicz-Borecki, J.E. McLean, R.R. Dupont, Bioaccumulation of copper, lead, and zinc in six macrophyte species grown in simulated stormwater bioretention systems, J. Environ. Manage., 166 (2016) 267–275.
  10. Q. Guo, Z.J. Shi, J.L. Xu, C.C. Yang, M. Huang, M.L. Shi, R.C. Jin, Inhibition of the partial nitritation by roxithromycin and Cu(II), Bioreso. Technol., 214 (2016) 253–258.
  11. Z.Z. Zhang, Q.Q. Zhang, J.J. Xu, Z.J. Shi, Q. Guo, X.Y. Jiang, H.Z. Wang, G.H. Chen, R.C. Jin, Long-term effects of heavy metals and antibiotics on granule-based anammox process: granule property and performance evolution, Appl. Microbiol. Biot., 100(100) (2016) 2417–2427.
  12. Y.Y. Wang, J. Qin, S. Zhou, X.M. Lin, L. Ye, C.K. Song, Y. Yan, Identification of the function of extracellular polymeric substances (EPS) in denitrifying phosphorus removal sludge in the presence of copper ion, Water Res., 73 (2015) 252–264.
  13. B.J. Ni, F. Fang, W.M. Xie, M. Sun, G.P. Sheng, W.H. Li, H.Q. Yu, Characterization of extracellular polymeric substances produced by mixed microorganisms in activated sludge with gel-permeating chromatography, excitation-emission matrix fluorescence spectroscopy measurement and kinetic modeling, Water Res., 43(5) (2009) 1350–1358.
  14. J. Wingender, T.R. Neu, H.C. Flemming, What are bacterial extracellular polymeric substances? Springer Berlin Heidelberg, (1999) 1–19.
  15. P. D’Abzac, F. Bordas, E.V. Hullebusch, P.N.L. Lens, G. Guibaud, Effects of extraction procedures on metal binding properties of extracellular polymeric substances (EPS) from anaerobic granular sludge, Colloid. Surface. B., 80(2) (2010) 161–168.
  16. G.P. Sheng, J. Xu, W.H. Li, H.Q. Yu, Quantification of the interactions between Ca2+, Hg2+ and extracellular polymeric substances (EPS) of sludge, Chemosphere, 93(7) (2013) 1436–1441.
  17. Z.W. Liang, W.H. Li, S.Y. Yang, P. Du, Extraction and structural characteristics of extracellular polymeric substances (EPS), pellets in autotrophic nitrifying biofilm and activated sludge, Chemosphere, 81(5) (2010) 626–632.
  18. A. Ramesh, D.J. Lee, J.Y. Lai, Membrane biofouling by extracellular polymeric substances or soluble microbial products from membrane bioreactor sludge, Appl. Microbiol. Biot., 74(3) (2007) 699–707.
  19. D.Y. Zhang, D.J. Lee, X.L. Pan, Fluorescent quenching for biofilm extracellular polymeric substances (EPS) bound with Cu (II), J. Taiwan Inst. Chem. Eng., 43(3) (2012) 450–454.
  20. J.H. Priester, S.G. Olson, S.M. Webb, M.P. Neu, L.E. Hersman, P.A. Holden, Enhanced exopolymer production and chromium stabilization in Pseudomonas putida unsaturated biofilms, Appl. Environ. Microb., 72 (2006) 1988–1996.
  21. Y.M. Liu, J.B. Guo, J. Lian, Z. Chen, Y.J. Li, Y.J. Xing, T. Wang, Effects of extracellular polymeric substances (EPS) and N-acyl-L-homoserine lactones (AHLs) on the activity of anammox biomass, Int. Biodeter. Biodegr., 129 (2018) 141–147.
  22. J.B. Guo, S.H. Wang, J. Lian, H.H. Ngo, W.S. Guo, Y.M. Liu, Y.Y. Song, Rapid start-up of the anammox process: Effects of five different sludge extracellular polymeric substances on the activity of anammox bacteria, Biores. Technol., 220 (2016) 641–646.
  23. L.L. Yan, Y. Liu, Y. Ren, Y. Zhang, Analysis of the characteristics of short-cut nitrifying granular sludge and pollutant removal processes in a sequencing batch reactor, Bioproc. Biosyst. Eng., 37(2) (2014) 125–132.
  24. L.L. Yan, Y. Liu, Y. Wen, Y. Ren, G.X. Hao, Y. Zhang, Role and significance of extracellular polymeric substances from granular sludge for simultaneous removal of organic matter and ammonia nitrogen, Biores. Technol., 179 (2015) 460–466.
  25. S. Comte, G. Guibaud, M. Baudu, Relations between extraction protocols for activated sludge extracellular polymeric substances (EPS) and EPS complexation properties: part I. Comparison of the efficiency of eight EPS extraction methods, Enzyme Microb. Tech., 38 (2006) 237–245.
  26. W. Chen, P. Westerhoff, J.A. Leenheer, K. Booksh, Fluorescence excitation-emission matrix regional integration to quantify spectra for dissolved organic matter, Environ. Sci. Technol., 37(24) (2003) 5701–5710.
  27. M. Xi, Y.Y. Zi, Q.G. Wang, S. Wang, G.L. Cui, F.L. Kong, Assessment of the content, structure, and source of soil dissolved organic matter in the coastal wetlands of Jiaozhou Bay, China, Phys. Chem. Earth. Parts. A/b/c, 103 (2018) 35–44.
  28. V. Torretta, M. Ragazzi, E. Trulli, G.D. Feo, G. Urbini, M. Raboni, E.C. Rada, Assessment of biological kinetics in a conventional municipal WWTP by means of the oxygen uptake rate method, Sustainability, 6(4) (2014) 1833–1847.
  29. F. Çeçen, N. Semerci, A.G. Geyik, Inhibition of respiration and distribution of Cd, Pb, Hg, Ag and Cr species in a nitrifying sludge, J. Hazard. Mater., 178(1–3) (2010) 619–627.
  30. P. Madoni, D. Davoli, L. Guglielmi, Response of SOUR and AUR to heavy metal contamination in activated sludge, Water Res., 33(10) (1999) 2459–2464.
  31. I.D.S. Henriques, N.G. Love, The role of extracellular polymeric substances in the toxicity response of activated sludge bacteria to chemical toxins, Water Res., 41(18) (2007) 4177–4185.
  32. F.W. Gilcreas, Standard methods for the examination of water and waste water, American Public Health Association, 56(3) (1985) 113.
  33. O.H. Lowry, N.J. Rosebrough, A.L. Farr, R.J. Randall, Protein measurement with the folin phenol reagent, J. Biol. Chem., 193 (1951) 265–275.
  34. B. Frølund, R. Palmgren, K. Keiding, P.H. Nielsen, Extraction of extracellular polymers from activated sludge using a cation exchange resin, Water Res., 30(8) (1996) 1749–1758.
  35. R.X. Jiang, S.J. Sun, K. Wang, Z.M. Hou, X.C. Li, Impacts of Cu(II) on the kinetics of nitrogen removal during the wastewater treatment process, Ecotox. Environ. Safe., 98 (2013) 54–58.
  36. Y.P. Ma, D.L. Yuan, B.L. Mu, J.N. Zhou, X.J. Zhang, Reactor performance, biofilm property and microbial community of anaerobic ammonia-oxidizing bacteria under long-term exposure to elevated Cu (II), Int. Biodeter. Biodegr., 129 (2018) 156–162.
  37. G.E. Kapellos, T.S. Alexiou, A.C. Payatakes, A multiscale theoretical model for diffusive mass transfer in cellular biological media, Math. Biosci., 210(1) (2007) 177–237.
  38. J. Henkel, M. Lemac, M. Wagner, P. Cornel, Oxygen transfer in membrane bioreactors treating synthetic greywater, Water Res., 43(6) (2009) 1711–1719.
  39. Z.Q. Hu, J. Jin, H.D. Abruna, P.L. Houston, A.G. Hay, W.C. Ghiorse, M.L. Shuler, G. Hidalgo, L.W. Lion, Spatial distributions of copper in microbial biofilms by scanning electrochemical microscopy, Environ. Sci. Technol., 41(3) (2007) 936–941.
  40. M.J. Brown, J.N. Lester, Metal removal in activated sludge: the role of bacterial extracellular polymer, Water Res., 13(9) (1979) 817– 837.
  41. J.N. Lester, R.M. Sterrnt, P.W.W. Kirk, Significance and behaviour of heavy metals in wastewater treatment process. II. Sludge treatment and disposal, Sci. Total. Environ., 30 (1983) 45–83.
  42. Z.B. Yue, Q. Li, C.C. Li, T.H. Chen, J. Wang, Component analysis and heavy metal adsorption ability of extracellular polymeric substances (EPS) from sulfate reducing bacteria, Biores. Technol., 194 (2015) 399–402.
  43. G.P. Sheng, H.Q. Yu, Z.B. Yue, Production of extracellularpolymeric substances from Rhodopseudomonas acidophila in the presence of toxic substances, Appl. Microbiol. Biot., 69(2) (2005) 216–222.
  44. F.S. Cao, I. Bourven, G. Guibaud, E.R. Rene, P.N.L. Lens, Y. Pechaud, E.D.V. Hullebusch, Alteration of the characteristics of extracellular polymeric substances (EPS) extracted from the fungus Phanerochaete chrysosporium when exposed to subtoxic concentrations of nickel (II), Int. Biodeter. Biodegr., 129 (2018) 179–188.
  45. P.T. Hoa, L. Nair, C. Visvanathan, The effect of nutrients on extracellular polymeric substance production and its influence on sludge properties, Water S A, 29 (2003) 437–442.
  46. C. White, G.M. Gadd, Accumulation and effects of cadmium on sulphate-reducing bacterial biofilms, Microbiology, 144 (1998) 1407–1415.
  47. D.L. Huang, G.M. Zeng, C.L. Feng, S. Hu, X.Y. Jiang, L. Tang, F.F. Su, Y. Zhang, W. Zeng, H.L. Liu, Degradation of lead-contaminated lignocellulosic waste by Phanerochaete chrysosporium and the reduction of lead toxicity, Environ. Sci. Technol., 42(13) (2008) 4946–4951.
  48. F.J. Rodríguez, P. Schlenger, M. García-Valverde, A comprehensive structural evaluation of humic substances using several fluorescence techniques before and after ozonation. Part I: structural characterization of humic substances, Sci. Total Environ., 476–477 (2014) 718–730.
  49. D.Y. Zhang, X.L. Pan, K.M.G. Mostofa, X. Chen, G.J. Mu, F.C. Wu, J. Liu, W.J. Song, J.Y. Yang, Y.L. Liu, Q.L. Fu, Complexation between Hg (II) and biofilm extracellular polymeric substances: An application of fluorescence spectroscopy, J. Hazard. Mater., 175(1–3) (2010) 359–365.
  50. Z.N. Sui, E.Q. Zhi, J. Yao, H.B. Yu, Y.H. Song, H. Li, Three dimensional fluorescence spectral domain integral method for the analysis of the composition and origin of DOM in Liaohe wetland, J. Environ. Eng. Technol., 5 (2015) 114–120.
  51. L.L. Yan, S. L. Zhang, G.X. Hao, X.L. Zhang, Y. Ren, Y. Wen, Y.H. Guo, Y. Zhang, Simultaneous nitrification and denitrification by EPSs in aerobic granular sludge enhanced nitrogen removal of ammonium-nitrogen-rich wastewater, Biores. Technol., 202c (2016) 101–106.
  52. X. Han, Z. Wang, M. Chen, X. Zhang, C.Y. Tang, Z. Wu, Acute responses of microorganisms from membrane bioreactors in the presence of NaOCl: protective mechanisms of extracellular polymeric substances, Environ. Sci. Technol., 51(6) (2017) 3233–3241.