References

  1. Y. Gao, Y.W. Xie, Q. Zhang, A.L. Wang, Y.X. Yu, L.Y. Yang, Intensified nitrate and phosphorus removal in an electrolysisintegrated horizontal subsurface-flow constructed wetland, Water Res., 108 (2017) 39–45.
  2. D. Claveau-Mallet, E. Boutet, Y. Comeau, Steel slag filter design criteria for phosphorus removal from wastewater in decentralized applications, Water Res., 143 (2018) 28–37.
  3. J.A. Kim, Phosphorus Removal in Municipal Wastewater by Electrolysis, Master’s thesis, University of Dan-kook, Republic of Korea, 2010.
  4. D.H. Song, A study on Phosphorus Removal in the SBR Process Using Iron Electrolysis Device, Master’s thesis, National University of Chung-ju, Republic of Korea, 2010.
  5. M. Yousuf, A. Mollah, R. Schennach, J.R. Parga, D.L. Cocke, Electrocoagulation (EC) — science and applications, J. Hazard. Mater., 84 (2001) 29–41.
  6. M. Kobya, O. Taner Can, M. Bayramoglu, Treatment of textile wastewaters by electrocoagulation using iron and aluminum electrodes, J. Hazard. Mater., 100 (2003) 163–178.
  7. A. Bagga, S. Chellam, D.A. Clifford, Evaluation of iron chemical coagulation and electrocoagulation pretreatment for surface water microfiltration, J. Membr. Sci., 309 (2008) 82–93.
  8. A. Suarez-Escobar, A. Pataquiva-Mateus, A. Lopez-Vasquez, Electrocoagulation—photocatalytic process for the treatment of lithographic wastewater. Optimization using response surface methodology (RSM) and kinetic study, Catal. Today, 266 (2016) 120–125.
  9. I. Kabdsh, I. Arslan-Alaton, T. Olmez-Hanci, O. Tunay, Electrocoagulation applications for industrial wastewaters: A critical review, Environ. Technol. Rev., 1 (2012) 2–45.
  10. G. Chen, Electrochemical technologies in wastewater treatment, Sep. Purif. Technol., 38 (2004) 11–41.
  11. A. Akyol, Treatment of paint manufacturing wastewater by electrocoagulation, Desalination, 285 (2012) 91–99.
  12. A. de Mello Ferreira, M. Marchesiello, P-X Thivel, Removal of copper, zinc and nickel present in natural water containing Ca2+ and HCO3–ions by electrocoagulation, Sep. Purif. Technol., 107 (2013) 109–117.
  13. A. Ogedey, M. Tanyol, Optimizing electrocoagulation process using experimental design for COD removal from unsanitary landfill leachate, Water Sci. Technol., 76 (2017) 2901–2917.
  14. E. GilPavas, I. Dobrosz-Gomez, M.A. Gromez-Garcia, The removal of the trivalent chromium from the leather tannery wastewater: the optimization of the electro-coagulation process parameters, Water Sci. Technol., 63 (2011) 385–394.
  15. H-ENTECH Co., Ltd., Development of Advanced CF-SBR Equipped with Fiber Filter and Electrical Coagulation, Report, WHO, Giheung-gu, Yongin-si, Gyeonggi-do, Republic of Korea, 2011.
  16. Ministry of Environment (MOE), The Republic of Korea Standard Methods for Water Quality, 2017, pp. 256–262.
  17. T. Olmez-Hanci, Z. Kartal, I. Arslan-Alaton, Electrocoagulation of commercial naphthalene sulfonates: process optimization and assessment of implementation potential, J. Environ. Manage., 99 (2012) 44–51.
  18. V. Mavrov, S. Stamenov, E. Todorova, H. Chmiel, T. Erwe, New hybrid electrocoagulation membrane process for removing selenium from industrial wastewater, Desalination, 201 (2006) 290–296.
  19. K.S. Kim, J.S. Yoo, S.Y. Kim, H.J. Lee, K.H. Ahn, I.S. Kim, Relationship between the electric conductivity and phosphorus concentration variations in an enhanced biological nutrient removal process, Water Sci. Technol., 55 (2007) 203–208.
  20. C.G. Kim, A Study on the Automatic T-P Coagulation Control System using an EC (Electrical Conductivity), Master’s thesis, Korea National University of Transportation, Republic of Korea, 2015.