References

  1. H. Dong, G. Zeng, L. Tang, C. Fan, C. Zhang, X. He, Y. He, An overview on limitations of TiO2-based particles for photocatalytic degradation of organic pollutants and the corresponding countermeasures, Water. Res., 79 (2015) 128–146.
  2. S. Malato, P. Fernández-Ibáñez, M.I. Maldonado, J. Blanco, W. Gernjak, Decontamination and disinfection of water by solar photocatalysis: recent overview and trends, Catal. Today, 147 (2009) 1–59.
  3. L.G.C. Villegas, N. Mashhadi, M. Chen, D. Mukherjee, K.E. Taylor, N. Biswas, A short review of techniques for phenol removal from wastewater, Curr. Pollut. Rep., 2 (2016) 157–167.
  4. P. Kazemi, M. Peydayesh, A. Bandegi, T. Mohammadi, O. Bakhtiari, Stability and extraction study of phenolic wastewater treatment by supported liquid membrane using tributyl phosphate and sesame oil as liquid membrane, Chem. Eng. Res. Des., 92 (2014) 375–383.
  5. J.W. Fleeger, K.R. Carman, R.M. Nisbet, Indirect effects of contaminants in aquatic ecosystems, Sci. Total Environ., 317 (2003) 207–233.
  6. D. Mukherjee, S. Bhattacharya, V. Kumar, J. Moitra, Biological significance of [14C]phenol accumulation in different organs of a murrel, Channa punctatus, and the common carp, Cyprinus carpio, Biomed Environ. Sci., 3 (1990) 337–342.
  7. D. Mukherjee, D. Guha, V. Kumar, S. Chakrabarty, Impairment of steroidogenesis and reproduction in sexually mature Cyprinus carpio by phenol sulfide under laboratory conditions, Aquat. Toxicol., 21 (1991) 29–39.
  8. G. Busca, S. Berardinelli, C. Resini, L. Arrighi, Technologies for the removal of phenol from fluid streams: a short review of recent developments, J. Hazard. Mater., 160 (2008) 265–288.
  9. H. Dong, I.M.C. Lo, Transport of surface-modified nano zerovalent iron (SM-NZVI) in saturated porous media: effects of surface stabilizer type, subsurface geochemistry, and contaminant loading, Water Air Soil Pollut., 9 (2014) 2107.
  10. E. Forgacs, T. Cserhati, G. Oros, Removal of synthetic dyes from wastewaters: a review, Environ. Int., 30 (2004) 953–971.
  11. S. Senthilkumaar, K. Porkodi, R. Gomathi, N. Manonmani, Sol–gel derived silver doped nanocrystalline titania catalysed photodegradation of methylene blue from aqueous solution, Dyes Pigm., 69 (2006) 22–30.
  12. E. Bizani, K. Fytianos, I. Poulios, V. Tsiridis, Photocatalytic decolorization and degradation of dye solutions and wastewaters in the presence of titanium dioxide, J. Hazard. Mater., 136 (2006) 85–94.
  13. N.H. Salah, M. Bouhelassaa, S. Bekkouche, A. Boultii, Study of photocatalytic degradation of phenol, Desalination, 166 (2004) 347–354.
  14. D. Fabbri, A.B. Prevot, E. Pramauro, Effect of surfactant microstructures on photocatalytic degradation of phenol and chlorophenols, Appl. Catal., B, 62 (2006) 21–27.
  15. W. Jingzheng, Z. Kaikai, H. Jiewei, G. Feng, C. Lihui, Q. Renhui, Photocatalytic Characteristic of Fe-doped TiO2 with Phenol, 5th International Conference on Advanced Engineering Materials and Technology, 2015.
  16. S. Sohrabi, F. Akhlaghian, Surface investigation and catalytic activity of iron-modified TiO2. J. Nanostructure Chem., 6 (2016) 93–102.
  17. M. Lezner, E. Grabowska, A. Zaleska, Preparation and photocatalytic activity of iron-modified titanium dioxide photocatalyst, Physicochem. Probl. Miner. Process., 48 (2012) 193–200.
  18. R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, Y. Taga, Visible-light photocatalysis in nitrogen-doped titanium oxides, Science, 293 (2001) 269–271.
  19. Y. Cong, J. Zhang, F. Chen, M. Anpo, D. He, Preparation, photocatalytic activity, and mechanism of nano-TiO2 co-doped with nitrogen and iron (III), J. Phys. Chem. C, 111 (2007) 10618–10623.
  20. I. Sopyan, N. Hafizah, P. Jamal, Immobilization of TiO2 with cement: photocatalytic degradation of phenol and its kinetic studies, Indian J. Chem. Technol., 18 (2011) 263–270.
  21. L.S. Clesceri, A.E. Greenberg, R. Trussell, Standard methods for the examination of water and wastewater, APHA, AWWA, WPCF, Washington DC, 2016.
  22. Y. Choi, T. Umebayashi, M. Yoshikawa, Fabrication and characterization of C-doped anatase TiO2 photocatalysts, J. Mater. Sci., 39 (2004) 1837–1839.
  23. S. Mianxince, B. Liang, Z. Tianliang, Z. Xiaoyong, Surface ζ potential and photocatalytic activity of rare earths doped TiO2, J. Rare Earths, 26 (2008) 693–699.
  24. G. Li, L. Chen, N.M. Dimitrijevic, K.A. Gray, Visible light photocatalytic properties of anion-doped TiO2 materials prepared from a molecular titanium precursor, Chem. Phys. Lett., 451 (2008) 75–79.
  25. S. Ahmed, M. Rasul, W.N. Martens, R. Brown, M. Hashib, Heterogeneous photocatalytic degradation of phenols in wastewater: a review on current status and developments, Desalination, 216 (2016) 3–18.
  26. H.K. Singh, M. Saquib, M.M. Haque, M. Muneer, D.W. Bahnemann, Titanium dioxide mediated photocatalysed degradation of phenoxyacetic acid and 2,4,5-trichlorophenoxyacetic acid, in aqueous suspensions, J. Mol. Catal. A: Chem., 264 (2007) 66–72.
  27. M.M. Haque, M. Muneer, D.W. Bahnemann, Semiconductor-mediated photocatalyzed degradation of a herbicide derivative, chlorotoluron, in aqueous suspensions, Environ. Sci. Technol., 40 (2006) 4765–4770.
  28. A. Houas, H. Lachheb, M. Ksib, E. Elaloui, C. Guillard, J.M. Herrmann, Photocatalytic degradation pathway of methylene blue in water, Appl. Catal., B, 2 (2001) 145–157.
  29. D.S. Bhatkhande, V.G. Pangarkar, A.A. Beenackers, Photocatalytic degradation for environmental applications – a review, J. Chem. Technol. Biotechnol., 77 (2002) 102–116.
  30. N. Kashif, F. Ouyang, Parameters effect on heterogeneous photocatalysed degradation of phenol in aqueous dispersion of TiO2, J. Environ. Sci., 21 (2009) 527–533.
  31. F. Akbal, A.N. Onar, Photocatalytic degradation of phenol, Environ. Monit. Assess., 83 (2003) 295–302.
  32. N. Laoufi, D. Tassalit, F. Bentahar, The degradation of phenol in water solution by TiO2 photocatalysis in a helical reactor, Global Nest J., 10 (2008) 404–418.
  33. J. Yang, S. Lee, M. Farrokhi, O. Giahi, M. Shirzad-Siboni, Photocatalytic removal of Cr(VI) with illuminated TiO2, Desal. Wat. Treat., 46 (2012) 375–380.
  34. M. Shirzad-Siboni, M.T. Samadi, J.K. Yang, S.M. Lee, Photocatalytic removal of Cr(VI) and Ni(II) by UV/TiO2: kinetic study, Desal. Wat. Treat., 40 (2012) 77–83.
  35. T. Mishra, J. Hait, N. Aman, R. Jana, S. Chakravarty, Effect of UV and visible light on photocatalytic reduction of lead and cadmium over titania based binary oxide materials, J. Colloid Interface Sci., 316 (2007) 80–84.
  36. K. Selvam, M. Muruganandham, I. Muthuvel, M. Swaminathan, The influence of inorganic oxidants and metal ions on semiconductor sensitized photodegradation of 4-fluorophenol, Chem. Eng. J., 128 (2007) 51–57.
  37. L. Yang, E.Y. Liya, M.B. Ray, Degradation of paracetamol in aqueous solutions by TiO2 photocatalysis, Water. Res., 42 (2008) 3480–3488.
  38. D. Chen, A.K. Ray, Photocatalytic kinetics of phenol and its derivatives over UV irradiated TiO2, Appl. Catal., B, 123 (1999) 143–157.
  39. A. Sobczyński, Ł. Duczmal, W. Zmudziński, Phenol destruction by photocatalysis on TiO2: an attempt to solve the reaction mechanism, J. Mol. Catal. A: Chem., 213 (2004) 225–230.
  40. A.H. Mahvi, A. Maleki, M. Alimohamadi, A. Ghasri, Photo-oxidation of phenol in aqueous solution: toxicity of intermediates, Korean J. Chem. Eng., 24 (2007) 79–82.
  41. Z. Guo, R. Ma, G. Li, Degradation of phenol by nanomaterial TiO2 in wastewater, Chem. Eng. J., 119 (2006) 55–59.
  42. K. Parida, S. Parija, Photocatalytic degradation of phenol under solar radiation using microwave irradiated zinc oxide, Sol. Energy, 8 (2006) 1048–1054.
  43. I. Udom, P.D. Myers, M.K. Ram, A.F. Hepp, E. Archibong, E.K. Stefanakos, D.Y. Goswami, Optimization of photocatalytic degradation of phenol using simple photocatalytic reactor, Am. J. Anal. Chem., 5 (2014) 743–750.
  44. P.R. Shukla, S. Wang, H.M. Ang, M.O. Tadé, Photocatalytic oxidation of phenolic compounds using zinc oxide and sulphate radicals under artificial solar light, Sep. Purif. Technol., 70 (2010) 338–344.