References
- M.B. Khalid, G.F. Faris, M.A. Isam, Reuse of alum sludge in
construction materials and concrete works: a general overview,
Infrastruct. Univ. Kuala Lumpur Res. J., 2 (2014) 20–30.
- Y.W. Ling, S. Dong, Z. Li, G.L. Feng, A. Ning, H.Y. Wei,
H.Z. Chun, Utilization of alum sludge for producing aluminum
hydroxide and layered double hydroxide, Ceram. Int., 40 (2014)
15503–15514.
- M. Manali, Preparation and Characterization of Alumina-
Strontium Aluminate Based Composite, Thesis, National
Institute of Technology, Roukela, 2015.
- R.C. Ropp, Encyclopedia of the Alkaline Earth Compounds,
Elsevier, Amsterdam, 2013.
- P. Ptáček, F. Šoukal, T. Opravil, E. Bartoníčková, M. Zmrzlý,
R. Novotný, Synthesis, hydration and thermal stability of
hydrates in strontium-aluminate cement, Ceram. Int., 40 (2014)
9971–9979.
- M. Martynas, J. Jens-Erik, K. Aivaras, Sol-gel synthesis,
structural and optical properties of cerium-doped strontium
aluminates, Sr3Al2O6 and SrAl12O19, Mater. Sci., 19 (2013)
438–442.
- P. Ptáček, Strontium Aluminate - Cement Fundamentals,
Manufacturing, Hydration, Setting Behaviour and Applications,
2014, Available at doi: 10.5772/57363, ISBN: 978-953-51-1591-5.
- I. Odler, Special Inorganic Cements (Modern Concrete
Technology), 1st ed., Taylor & Francis Group, New York, 2000.
- N. Illyouka, V. Timofeeva, Development of Hydraulic Zirconia
Cements and Their Applications for Productions of Refractories
Items, T.t. University (Ed.), Kharkov, Ukraine, 1998.
- A. Douy, M. Capron, Crystallisation of spray-dried amorphous
precursors in the SrO–Al2O3 system: a DSC study, J. Eur. Ceram.
Soc., 23 (2003) 2075–2081.
- A.K. Chatterjee, Re-examining the prospects of aluminous
cements based on alkali-earth and rare-earth oxides, Cem.
Concr. Res., 39 (2009) 981–988.
- K. Bum-Joon, H. Zubair, K. Jung-Sik, Synthesis and
characterization of long persistence Sr4Al14O25: Eu2+, Dy3+
phosphor prepared by combustion method, Int. J. Ceram.
Process. Res., 14 (2013) 601–605.
- G.I. Akmehmet, S. Šturm, L. Bocher, M. Kociak, B. Ambrožič,
C.W. Ow-Yang, Structure and luminescence in long persistence
Eu, Dy, and B codoped strontium aluminate phosphors: the
boron effect, J. Am. Ceram. Soc., 99 (2016) 2175–2180.
- D. Haranath, S. Virendra, C. Harish, S. Pooja, Tuning of emission
colours in strontium aluminate long persisting phosphor,
J. Phys. D: Appl. Phys., 36 (2003) 2244–2248.
- M. Avdeev, S. Yakovlev, A.A. Yaremchenko, V.V. Kharton,
Transitions between P21, P63 and P6322 modifications of
SrAl2O4 by in situ high-temperature X-ray and neutron
diffraction, J. Solid State Chem., 180 (2007) 3535–3544.
- V.P. Singh, A.P. Mohanty, A.S.P. Lochab, R. Chandana,
Anomalous luminescent properties in ZnO and SrAl2O4 composites, RSC Adv., 4 (2014) 36765–36770.
- C. Yu-Lun, H. Hsing-I, Phase evolution during formation of
SrAl2O4 from SrCO3 and α-Al2O3/AlOOH, J. Am. Ceram. Soc.,
90 (2007) 2759–2765.
- M. Misevicius, O. Scit, I. Grigoraviciute-Puroniene, G. Degutis,
I. Bogdanoviciene, A. Kareiva, Sol–gel synthesis and
investigation of un-doped and Ce-doped strontium aluminates,
Ceram. Int., 38 (2012) 5915–5924.
- Z. Xue, S. Deng, Y. Liu, B. Lei, Y. Xiao, M. Zheng, Synthesis
and luminescence properties of SrAl2O4: Eu2+, Dy3+ hollow
microspheres via a solvothermal co-precipitation method,
J. Rare Earths, 31 (2013) 241–246.
- H. Song, D. Chen, W. Tang, Y. Peng, Synthesis of SrAl2O4:
Eu2+, Dy3+, Gd3+ phosphor by combustion method and its
phosphorescence properties, Displays, 29 (2008) 41–44.
- N. Setoudeh, N.J. Welham, Ball milling induced reduction of
SrSO4 by Al, Int. J. Miner. Process., 98 (2011) 214–218.
- Y. Liu, C.N. Xu, Influence of calcining temperature on
photoluminescence and triboluminescence of europium-doped
strontium aluminate particles prepared by sol–gel process,
J. Phys. Chem. B, 107 (2003) 3991–3995.
- Z. Fu, S. Zhou, S. Zhang, Study on optical properties of rareearth
ions in nanocrystalline monoclinic SrAl2O4: Ln (Ln = Ce3+,
Pr3+, Tb3+), J. Phys. Chem. B, 109 (2005) 14396–14400.
- Y. Xu, W. Peng, S. Wang, X. Xiang, P. Lu, Synthesis of SrAl2O4
and SrAl12O19 via ethylenediaminetetraacetic acid precursor,
Mater. Chem. Phys., 98 (2006) 51–54.
- Y.-L. Chang, H.-I. Hsiang, M.-T. Liang, F.-S. Yen, Phase evolution
and thermal behaviors of the solid-state reaction between SrCO3
and Al2O3 to form SrAl2O4 under air and CO2-air atmospheres,
Ceram. Int., 38 (2012) 2269–2276.
- T. Peng, H. Yang, X. Pu, B. Hu, Z. Jiang, C. Yan, Combustion
synthesis and photoluminescence of SrAl2O4: Eu, Dy phosphor
nanoparticles, Mater. Lett., 58 (2004) 352–356.
- T. Aitasalo, P. Deren, J. Holsa, H. Jungner, J.C. Krupa,
M. Lastusaari, J. Legendziewicz, J. Niittykoski, W. Strek,
Persistent luminescence phenomena in materials doped with
rare earth ions, J. Solid State Chem., 171 (2003) 114–122.
- J. Hölsä, H. Jungner, M. Lastusaari, J. Niittykoski, Persistent
luminescence of Eu2+ doped alkaline earth aluminates, MAl2O4:
Eu2+, J. Alloys Compd., 323–324 (2001) 326–330.
- R.M. Khattab, H.A. Badr, H.H. Abo-Almaged, H.E.H. Sadek,
Recycling of alum sludge for alpha Al2O3 production using
different chemical treatments, Desal. Wat. Treat., 113 (2018)
148–159.
- C. Harish, D. Haranath, S. Virendra, S. Pooja, Synthesis
of nanocrystals of long persisting phosphor by modified
combustion technique, J. Cryst. Growth, 271 (2004) 307–312.
- C. Yu-Lun, I.H. Hsing, L. Ming-Tsai, Characterizations of Eu,
Dy co-doped SrAl2O4 phosphors prepared by the solid-state
reaction with B2O3 addition, J. Alloys Compd., 461 (2008)
598–603.
- R.S. Garcés, T.J. Torres, V.A. Flores, Synthesis of SrAl2O4 and
Sr3Al2O6 at high temperature, starting from mechanically
activated SrCO3 and Al2O3 in blends of 3:1 molar ratio, Ceram.
Int., 38 (2012) 889–894.
- C. Cherng, C. Teng-Ming, Effect of host compositions on the
afterglow properties of phosphorescent strontium aluminate
phosphors derived from the sol-gel method, J. Mater. Res., 16
(2001) 1293–1300.
- C. Chengkang, Y. Zhaoxin, M. Dali, Eu2+ activated long
persistent strontium aluminate nano scaled phosphor
prepared by precipitation method, J. Alloys Compd., 415
(2006) 220–224.
- M. Franco, System SrO-Al2O3, (1964) pp. 118; Fig. 294 in Phase
diagram for ceramics, Part 1, E.M. Levine, C.R. Robbins, H.F. McMurdie, eds., The American Ceramic Society; Ohio. &
F. Massazza , The system SrO–Al2O3, Chim. Ind. (Milan)., 41
(1959)108–115.
- R.M. Khattab, M.M. El-Sayed Seleman, M.F. Zawrah,
Assessment of electric arc furnace dust: Powder characterization
and its sinterability as ceramic product, Ceram. Int., 43 (2017)
12939–12947.
- R.M. Khattab, M.M.S. Wahsh, N.M. Khalil, Ceramic
compositions based on nano forsterite/nano magnesium
aluminate spinel powders, Mater. Chem. Phys., 166 (2015)
82–86.
- R.M. Khattab, M.M.S. Wahsh, N.M. Khalil, F. Gouraud,
M. Huger, T. Chotard, Effect of nanospinel additions on the
sintering of magnesia-zirconia ceramic composites, ACS Appl.
Mater. Interfaces, 6 (2014) 3320–3324.
- K. Alessio, L. Hagemann, Behaviour of refractory products
under constant and varying cyclic stress, Stahl-Eisen, 11 (1990)
95–110.
- G. Routschka, C. Woehrmeyer, F. Gebhardt, Studies on the
behaviour of magnesia, spinel and forsterite refractory bricks
under simulated service conditions in the middle regions of
oil-fired glass furnace regenerators. Part 1. Corrosion tests and
hot-mechanical behaviour of the test brickg, Glastech-Ber., 63
(1990) 87–92.
- M.M.S. Wahsh, R.M. Khattab, M.F. Zawrah, Sintering and
technological properties of alumina/zirconia/nano-TiO2 ceramic
composites, Mater. Res. Bull., 48 (2013) 1411–1414.