References
- Y. Qu, X. Zhang, J. Xu, W. Zhang, Y. Guo, Removal of hexavalent
chromium from wastewater using magnetotactic bacteria, Sep.
Sci. Technol., 136 (2014) 10–17.
- A. Demir, M. Arisoy, Biological and chemical removal of Cr(VI)
from waste water: cost and benefit analysis, J. Hazard. Mater.,
147 (2007) 275–280.
- M. Karnib, A. Kabbani, H. Holail, Z. Olama, Heavy metals
removal using activated carbon, silica and silica activated
carbon composite, Energy Procedia, 50 (2014) 113–120.
- N. Kongsricharoern, C. Polprasert, Chromium removal by
a bipolar electro-chemical precipitation process, Water Sci.
Technol., 34 (1996) 109–116.
- S. Rengaraj, K.-H. Yeon, S.-H. Moon, Removal of chromium
from water and wastewater by ion exchange resins, J. Hazard.
Mater., 87 (2001) 273–287.
- S. Kalidhasan, N. Rajesh, Simple and selective extraction
process for chromium (VI) in industrial wastewater, J. Hazard.
Mater., 170 (2009) 1079–1085.
- F. Fu, Q. Wang, Removal of heavy metal ions from wastewaters:
a review, J. Environ. Manage., 92 (2011) 407–418.
- A. Bingol, A. Aslan, A. Cakici, Biosorption of chromate anions
from aqueous solution by a cationic surfactant-modified lichen
(Cladonia rangiformis (L.)), J. Hazard. Mater., 161 (2009) 747–752.
- M. Bhattacharya, S.K. Dutta, J. Sikder, M.K. Mandal, Computational
and experimental study of chromium (VI) removal
in direct contact membrane distillation, J. Membr. Sci., 450
(2014) 447–456.
- A. Hafiane, D. Lemordant, M. Dhahbi, Removal of hexavalent
chromium by nanofiltration, Desalination, 130 (2000) 305–312.
- H.-g. Choi, M. Son, H. Choi, Integrating seawater desalination
and wastewater reclamation forward osmosis process
using thin-film composite mixed matrix membrane with
functionalized carbon nanotube blended polyethersulfone
support layer, Chemosphere, 185 (2017) 1181–1188.
- Y. Cui, Q. Ge, X.-Y. Liu, T.-S. Chung, Novel forward osmosis
process to effectively remove heavy metal ions, J. Membr. Sci.,
467 (2014) 188–194.
- B. Vital, J. Bartacek, J.C. Ortega-Bravo, D. Jeison, Treatment of
acid mine drainage by forward osmosis: heavy metal rejection
and reverse flux of draw solution constituents, Chem. Eng. J.,
332 (2018) 85–91.
- P. Zhao, B. Gao, Q. Yue, S. Liu, H.K. Shon, The performance of
forward osmosis in treating high-salinity wastewater containing
heavy metal Ni2+, Chem. Eng. J., 288 (2016a) 569–576.
- X. Liu, J. Wu, C. Liu, J. Wang, Removal of cobalt ions from
aqueous solution by forward osmosis, Sep. Purif. Technol.,
177 (2017) 8–20.
- K.L. Lee, R.W. Baker, H.K. Lonsdale, Membranes for power
generation by pressure-retarded osmosis, J. Membr. Sci., 8
(1981) 141–171.
- S. Loeb, L. Titelman, E. Korngold, J. Freiman, Effect of porous
support fabric on osmosis through a Loeb–Sourirajan type
asymmetric membrane, J. Membr. Sci., 129 (1997) 243–249.
- T.Y. Cath, A.E. Childress, M. Elimelech, Forward osmosis:
principles, applications, and recent developments, J. Membr.
Sci., 281 (2006) 70–87.
- J.R. McCutcheon, M. Elimelech, Modeling water flux in forward
osmosis: implications for improved membrane design, AIChE J.
53 (2007) 1736–1743.
- T. Ruprakobkit, L. Ruprakobkit, C. Ratanatamskul, Carboxylic
acid concentration by forward osmosis processes: dynamic
modeling, experimental validation and simulation, Chem. Eng.
J., 306 (2016) 538–549.
- K. Touati, F. Tadeo, C. Hanel, T. Schiestel, Effect of the operating
temperature on hydrodynamics and membrane parameters
in pressure retarded osmosis, Desal. Wat. Treat., 57 (2016)
10477–10489.
- J.S. Collura, D.E. Harrison, C.J. Richards, T.K. Kole, M.R. Fisch,
The effects of concentration, pressure, and temperature on the
diffusion coefficient and correlation length of SDS Micelles,
J. Phys. Chem. B, 105 (2001) 4846–4852.
- A. Boubakri, S.A.T. Bouguecha, I. Dhaouadi, A. Hafiane, Effect
of operating parameters on boron removal from seawater
using membrane distillation process, Desalination, 373 (2015)
86–93.
- C.-Y. Wu, H. Mouri, S.-S. Chen, D.-Z. Zhang, M. Koga,
J. Kobayashi, Removal of trace-amount mercury from
wastewater by forward osmosis, J. Water Process Eng., 14 (2016)
108–116.
- X. Zhang, Q. Lia, J. Wang, J. Li, C. Zhao, D. Hou, The main aim
of this part is to determine the optimal operating conditions, in
which the water flux and the retention rate were relatively high,
J. Environ. Chem. Eng., 5 (2017) 2508–2514.
- S. Phuntsho, F. Lotfi, S. Hong, D.L. Shaffer, M. Elimelech,
H. Kyong Shon, Membrane scaling and flux decline during
fertiliser-drawn forward osmosis desalination of brackish
groundwater, Water Res., 57 (2014) 172–182.
- P. Zhao, B. Gao, Q. Yue, S. Liu, H.K. Shon, Effect of high salinity
on the performance of forward osmosis: water flux, membrane
scaling and removal efficiency, Desalination, 378 (2016) 67–73.
- Y. Cui, X.Y. Liu, T.S. Chung, M. Weber, C. Staudt, C. Maletzko,
Removal of organic micro-pollutants (phenol, aniline and
nitrobenzene) via forward osmosis (FO) process: evaluation
of FO as an alternative method to reverse osmosis (RO), Water
Res., 91 (2016) 104–114.
- H.T. Nguyen, N.C. Nguyen, S.S. Chen, H. Ngo, W. Guo, C.W. Li,
A new class of draw solutions for minimizing reverse salt flux
to improve forward osmosis desalination, Sci. Total Environ.,
538 (2015) 129–136.
- S. Phuntsho, H.K. Shon, S.K. Hong, S.Y. Lee, S. Vigneswaran,
A novel low energy fertilizer driven forward osmosis
desalination for direct fertigation: evaluating the performance
of fertilizer draw solutions, J. Membr. Sci., 375 (2011) 172–181.
- T.S. Chung, S. Zhang, K.Y. Wang, J. Su, M.M. Ling, Forward
osmosis processes: yesterday, today and tomorrow,
Desalination, 287 (2012) 78–81.
- J.R. McCutcheon, R.L. McGinnis, M. Elimelech, Desalination
by ammonia–carbon dioxide forward osmosis: influence of
draw and feed solution concentrations on process performance,
J. Membr. Sci., 278 (2006) 114–123.
- S. Phuntsho, H.K. Shon, S. Vigneswaran, J. Kandasamy,
S.K. Hong, S.Y. Lee, Influence of temperature and temperature
difference in the performance of forward osmosis desalination
process, J. Membr. Sci., 415–416 (2012) 734–744.
- G.T. Gray, J.R. McCutcheon, M. Elimelech, Internal concentration
polarization in forward osmosis: role of membrane orientation,
Desalination, 197 (2006) 1–8.
- K.Y. Wang, M.M. Teoh, A. Nugroho, T.S. Chung, Integrated
forward osmosis–membrane distillation (FO–MD) hybrid
system for the concentration of protein solutions, Chem. Eng.
Sci., 66 (2011) 2421–2430.
- S. Choua, R. Wanga, L. Shi, Q. Shea, C. Tanga, A.G. Fane, Thinfilm
composite hollow fiber membranes for pressure retarded
osmosis (PRO) process with high power density, J. Membr. Sci.,
389 (2012) 25–33.
- S. Benavides, W.A. Phillip, Water recovery and solute rejection
in forward osmosis modules: modeling and bench-scale
experiments, J. Membr. Sci., 505 (2016) 26–35.
- J.R. McCutcheon, R.L. McGinnis, M. Elimelech, A novel
ammonia—carbon dioxide forward (direct) osmosis
desalination process, Desalination, 174 (2005) 1–11.
- M. Xie, W.E. Price, L.D. Nghiem, M. Elimelech, Effects of feed and
draw solution temperature and transmembrane temperature
difference on the rejection of trace organic contaminants by
forward osmosis, J. Membr. Sci., 438 (2013) 57–64.
- W. Wang, Y. Zhang, M. Esparra-Alvarado, X. Wang, H. Yang,
Y. Xie, Effects of pH and temperature on forward osmosis
membrane flux using rainwater as the makeup for cooling
water dilution, Desalination, 351 (2014) 70–76.