References

  1. A.J. Esswein, D.G. Nocera, Hydrogen production by molecular photocatalysis, Chem. Rev., 107 (2007) 4022–4047.
  2. Z. Wei, Y. Zhang, S. Wang, C. Wang, J. Ma, Fe-doped phosphorene for the nitrogen reduction reaction, J. Mater. Chem. A, 6 (2018) 13790–13796.
  3. B. Wang, J. Xia, L. Mei, L. Wang, Q. Zhang, Highly efficient and rapid lead(II) scavenging by the natural artemia cyst shell with unique three-dimensional porous structure and strong sorption affinity, ACS Sustain. Chem. Eng., 6 (2017) 1343–1351.
  4. Z. Yan, S. Gong, L. An, L. Yue, Z. Xu, Enhanced catalytic activity of graphene oxide/CeO2 supported Pt toward HCHO decomposition at room temperature, React. Kinet. Mech. Catal., 124 (2018) 293–304.
  5. W. Zhang, W. Wang, H. Shi, Y. Liang, J. Fu, M. Zhu, Surface plasmon-driven photoelectrochemical water splitting of aligned ZnO nanorod arrays decorated with loading-controllable Au nanoparticles, Sol. Energy Mater. Sol. Cells, 180 (2018) 25–33.
  6. Y. Zhao, Y. Wei, X. Wu, H. Zheng, Z. Zhao, J. Liu, J. Li, Graphene-wrapped Pt/TiO2 photocatalysts with enhanced photogenerated charges separation and reactant adsorption for high selective photoreduction of CO2 to CH4, Appl. Catal., B, 226 (2018) 360–372.
  7. G. Wang, X. Long, K. Qi, S. Dang, M. Zhong, S. Xiao, T. Zhou, Two-dimensional CdS/g-C6N6 heterostructure used for visible light photocatalysis, Appl. Surf. Sci., 471 (2019) 162–167.
  8. M. Khanahmadi, M. Hajaghazadeh, F. Nejatzadeh-Barandozi, F. Gholami-Borujeni, Photocatalytic oxidation process (UV-Fe2O3) efficiency for degradation of hydroquinone, Desal. Wat. Treat., 106 (2018) 305–311.
  9. J. Yu, Z. Chen, L. Zeng, Y. Ma, Z. Feng, Y. Wu, H. Lin, L. Zhao, Y. He, Synthesis of carbon-doped KNbO3 photocatalyst with excellent performance for photocatalytic hydrogen production, Sol. Energy Mater. Sol. Cells, 179 (2018) 45–56.
  10. K. Qi, S. Karthikeyan, W. Kim, F.A. Marzouqi, I.S. Al-Khusaibi, Y. Kim, R. Selvaraj, Hydrothermal synthesis of SnS2 nanocrystals for photocatalytic degradation of 2,4,6-trichlorophenol under white LED light irradiation, Desal. Wat. Treat., 92 (2017) 108–115.
  11. Q. Xiang, J. Yu, M. Jaroniec, Preparation and enhanced visiblelight photocatalytic H2-production activity of graphene/C3N4 composites, J. Phys. Chem. C, 115 (2011) 7355–7363.
  12. Q. Xu, B. Zhu, C. Jiang, B. Cheng, J. Yu, Constructing 2D/2D Fe2O3/g-C3N4 direct Z-scheme photocatalysts with enhanced H2 generation performance, Solar RRL, 2 (2018) 1800006.
  13. J. Low, J. Yu, M. Jaroniec, S. Wageh, A.A. Al-Ghamdi, Heterojunction photocatalysts, Adv. Mater., 29 (2017) 1601694.
  14. F. Alexander, M. AlMheiri, P. Dahal, J. Abed, N.S. Rajput, C. Aubry, J. Viegas, M. Jouiad, Water splitting TiO2 composite material based on black silicon as an efficient photocatalyst, Sol. Energy Mater. Sol. Cells, 180 (2018) 236–242.
  15. S. Liu, J. Zhou, Y. Lu, J. Su, Pulsed laser/electrodeposited CuBi2O4/BiVO4 p-n heterojunction for solar water splitting, Sol. Energy Mater. Sol. Cells, 180 (2018) 123–129.
  16. A. Fujishima, K. Honda, Electrochemical photolysis of water at a semiconductor electrode, Nature, 238 (1972) 37–38.
  17. Q. Xu, B. Cheng, J. Yu, G. Liu, Making co-condensed amorphous carbon/g-C3N4 composites with improved visiblelight photocatalytic H2-production performance using Pt as cocatalyst, Carbon, 118 (2017) 241–249.
  18. X. Xiang, L. Chou, X. Li, Synthesis of PdS-CdSe@CdS-Au nanorods with asymmetric tips with improved H2 production efficiency in water splitting and increased photostability, Chin. J. Catal., 39 (2018) 407–412.
  19. S. Cao, Q. Huang, B. Zhu, J. Yu, Trace-level phosphorus and sodium co-doping of g-C3N4 for enhanced photocatalytic H2 production, J. Power Sources, 351 (2017) 151–159.
  20. J. Fu, B. Zhu, W. You, M. Jaroniec, J. Yu, A flexible bio-inspired H2-production photocatalyst, Appl. Catal., B, 220 (2018) 148–160.
  21. K. Qi, S.-y. Liu, M. Qiu, Photocatalytic performance of TiO2 nanocrystals with/without oxygen defects, Chin. J. Catal., 39 (2018) 867–875.
  22. X. Li, R. Shen, S. Ma, X. Chen, J. Xie, Graphene-based heterojunction photocatalysts, Appl. Surf. Sci., 430 (2018) 53–107.
  23. K. Qi, B. Cheng, J. Yu, W. Ho, A review on TiO2-based Z-scheme photocatalysts, Chin. J. Catal., 38 (2017) 1936–1955.
  24. R. Shen, C. Jiang, Q. Xiang, J. Xie, X. Li, Surface and interface engineering of hierarchical photocatalysts, Appl. Surf. Sci., 471 (2019) 43–87.
  25. Z. Yan, Z. Yang, Z. Xu, L. An, F. Xie, J. Liu, Enhanced roomtemperature catalytic decomposition of formaldehyde on magnesium-aluminum hydrotalcite/boehmite supported platinum nanoparticles catalyst, J. Colloid Interface Sci., 524 (2018) 306–312.
  26. K. Qi, B. Cheng, J. Yu, W. Ho, Review on the improvement of the photocatalytic and antibacterial activities of ZnO, J. Alloys Compd., 727 (2017) 792–820.
  27. K. Qi, S.-y. Liu, Y. Chen, B. Xia, G.-D. Li, A simple post-treatment with urea solution to enhance the photoelectric conversion efficiency for TiO2 dye-sensitized solar cells, Sol. Energy Mater. Sol. Cells, 183 (2018) 193–199.
  28. J. Fu, J. Yu, C. Jiang, B. Cheng, g-C3N4-based heterostructured photocatalysts, Adv. Energy Mater., 8 (2018) 1701503.
  29. B. Zhu, L. Zhang, B. Cheng, J. Yu, First-principle calculation study of tri-s-triazine-based g-C3N4: a review, Appl. Catal., B, 224 (2018) 983–999.
  30. K. Qi, Y. Xie, R. Wang, S.-y. Liu, Z. Zhao, Electroless plating Ni-P cocatalyst decorated g-C3N4 with enhanced photocatalytic water splitting for H2 generation, Appl. Surf. Sci., 466 (2019) 847–853.
  31. J. Wen, J. Xie, X. Chen, X. Li, A review on g-C3N4-based photocatalysts, Appl. Surf. Sci., 391 (2017) 72–123.
  32. H. Yang, Z. Jin, H. Hu, Y. Bi, G. Lu, Ni-Mo-S nanoparticles modified graphitic C3N4 for efficient hydrogen evolution, Appl. Surf. Sci., 427 (2018) 587–597.
  33. W. Yu, J. Chen, T. Shang, L. Chen, L. Gu, T. Peng, Direct Z-scheme g-C3N4/WO3 photocatalyst with atomically defined junction for H2 production, Appl. Catal., B, 219 (2017) 693–704.
  34. M. Wu, J. Zhang, C. Liu, Y. Gong, R. Wang, B. He, H. Wang, Rational design and fabrication of noble-metal-free NixP cocatalyst embedded 3D N-TiO2/g-C3N4 heterojunctions with enhanced photocatalytic hydrogen evolution, Chem. Cat. Chem., 10 (2018) 3069–3077.
  35. T. Song, P. Zhang, J. Zeng, T. Wang, A. Ali, H. Zeng, In situ construction of globe-like carbon nitride as a self-cocatalyst modified tree-like carbon nitride for drastic improvement in visible-light photocatalytic hydrogen evolution, Chem. Cat. Chem., 9 (2017) 4035–4042.
  36. Z. Zhang, Y. Zhang, L. Lu, Y. Si, S. Zhang, Y. Chen, K. Dai, P. Duan, L. Duan, J. Liu, Graphitic carbon nitride nanosheet for photocatalytic hydrogen production: the impact of morphology and element composition, Appl. Surf. Sci., 391 (2017) 369–375.
  37. S. Cao, J. Low, J. Yu, M. Jaroniec, Polymeric photocatalysts based on graphitic carbon nitride, Adv. Mater., 27 (2015) 2150–2176.
  38. R. Shen, J. Xie, X. Lu, X. Chen, X. Li, Bifunctional Cu3P decorated g-C3N4 nanosheets as a highly active and robust visible-light photocatalyst for H2 production, ACS Sustain. Chem. Eng., 6 (2018) 4026–4036.
  39. R. Shen, J. Xie, H. Zhang, A. Zhang, X. Chen, X. Li, Enhanced solar fuel H2 generation over g-C3N4 nanosheet photocatalysts by the synergetic effect of noble metal-free Co2P cocatalyst and the environmental phosphorylation strategy, ACS Sustain. Chem. Eng., 6 (2017) 816–826.
  40. J. Fu, Q. Xu, J. Low, C. Jiang, J. Yu, Ultrathin 2D/2D WO3/g-C3N4 step-scheme H2-production photocatalyst, Appl. Catal., B, 243 (2019) 556–565.
  41. M.S. Akple, J. Low, S. Wageh, A.A. Al-Ghamdi, J. Yu, J. Zhang, Enhanced visible light photocatalytic H2-production of g-C3N4/WS2 composite heterostructures, Appl. Surf. Sci., 358 (2015) 196–203.
  42. P. Xia, M. Liu, B. Cheng, J. Yu, L. Zhang, Dopamine modified g-C3N4 and its enhanced visible-light photocatalytic H2-production activity, ACS Sustain. Chem. Eng., 6 (2018) 8945–8953.
  43. F. Al Marzouqi, R. Selvaraj, Y. Kim, Thermal oxidation etching process of g-C3N4 nanosheets from their bulk materials and its photocatalytic activity under solar light irradiation, Desal. Wat. Treat., 116 (2018) 267–276.
  44. N. Li, J. Zhou, Z. Sheng, W. Xiao, Molten salt-mediated formation of g-C3N4-MoS2 for visible-light-driven photocatalytic hydrogen evolution, Appl. Surf. Sci., 430 (2018) 218–224.
  45. X. Chen, Y.-S. Jun, K. Takanabe, K. Maeda, K. Domen, X. Fu, M. Antonietti, X. Wang, Ordered mesoporous SBA-15 type graphitic carbon nitride: a semiconductor host structure for photocatalytic hydrogen evolution with visible light, Chem. Mater., 21 (2009) 4093–4095.
  46. J. Xu, L. Zhang, R. Shi, Y. Zhu, Chemical exfoliation of graphitic carbon nitride for efficient heterogeneous photocatalysis, J. Mater. Chem. A, 1 (2013) 14766–14772.
  47. M. Liu, P. Xia, L. Zhang, B. Cheng, J. Yu, Enhanced photocatalytic H2-production activity of g-C3N4 nanosheets via optimal photodeposition of Pt as cocatalyst, ACS Sustain. Chem. Eng., 6 (2018) 10472–10480.
  48. Q. Lin, L. Li, S. Liang, M. Liu, J. Bi, L. Wu, Efficient synthesis of monolayer carbon nitride 2D nanosheet with tunable concentration and enhanced visible-light photocatalytic activities, Appl. Catal., B, 163 (2015) 135–142.
  49. Z. Lu, W. Song, C. Ouyang, H. Wang, D. Zeng, C. Xie, Enhanced visible-light photocatalytic performance of highly-dispersed Pt/g-C3N4 nanocomposites by one-step solvothermal treatment, RSC Adv., 7 (2017) 33552–33557.
  50. S. Huang, Y. Xu, M. Xie, H. Xu, M. He, J. Xia, L. Huang, H. Li, Synthesis of magnetic CoFe2O4/g-C3N4 composite and its enhancement of photocatalytic ability under visible-light, Colloids Surf., A, 478 (2015) 71–80.
  51. J.-X. Sun, Y.-P. Yuan, L.-G. Qiu, X. Jiang, A.-J. Xie, Y.-H. Shen, J.-F. Zhu, Fabrication of composite photocatalyst g-C3N4–ZnO and enhancement of photocatalytic activity under visible light, Dalton Trans., 41 (2012) 6756–6763.
  52. S. Cao, Y. Li, B. Zhu, M. Jaroniec, J. Yu, Facet effect of Pd cocatalyst on photocatalytic CO2 reduction over g-C3N4, J. Catal., 349 (2017) 208–217.
  53. W.-J. Ong, L.-L. Tan, S.-P. Chai, S.-T. Yong, A.R. Mohamed, Surface charge modification via protonation of graphitic carbon nitride (g-C3N4) for electrostatic self-assembly construction of 2D/2D reduced graphene oxide (rGO)/g-C3N4 nanostructures toward enhanced photocatalytic reduction of carbon dioxide to methane, Nano Energy, 13 (2015) 757–770.
  54. W.-J. Ong, L.-L. Tan, S.-P. Chai, S.-T. Yong, Heterojunction engineering of graphitic carbon nitride (g-C3N4) via Pt loading with improved daylight-induced photocatalytic reduction of carbon dioxide to methane, Dalton Trans., 44 (2015) 1249–1257.
  55. F. Li, Z. Yu, H. Shi, Q. Yang, Q. Chen, Y. Pan, G. Zeng, L. Yan, A Mussel-inspired method to fabricate reduced graphene oxide/g-C3N4 composites membranes for catalytic decomposition and oil-in-water emulsion separation, Chem. Eng. J., 322 (2017) 33–45.
  56. W. Kim, T. Tachikawa, H. Kim, N. Lakshminarasimhan, P. Murugan, H. Park, T. Majima, W. Choi, Visible light photocatalytic activities of nitrogen and platinum-doped TiO2: Synergistic effects of co-dopants, Appl. Catal., B, 147 (2014) 642–650.
  57. R. Nazir, P. Fageria, M. Basu, S. Gangopadhyay, S. Pande, Decoration of Pd and Pt nanoparticles on a carbon nitride (C3N4) surface for nitro-compounds reduction and hydrogen evolution reaction, New J. Chem., 41 (2017) 9658–9667.
  58. J. Yu, K. Wang, W. Xiao, B. Cheng, Photocatalytic reduction of CO2 into hydrocarbon solar fuels over g-C3N4–Pt nanocomposite photocatalysts, Phys. Chem. Chem. Phys., 16 (2014) 11492–11501.
  59. T. Hirakawa, Y. Nosaka, Properties of O2-• and OH formed in TiO2 aqueous suspensions by photocatalytic reaction and the influence of H2O2 and some ions, Langmuir, 18 (2002) 3247–3254.
  60. M. Li, L. Zhang, X. Fan, Y. Zhou, M. Wu, J. Shi, Highly selective CO2 photoreduction to CO over g-C3N4/Bi2WO6 composites under visible light, J. Mater. Chem. A, 3 (2015) 5189–5196.
  61. H.-S. Wu, L.-D. Sun, H.-P. Zhou, C.-H. Yan, Novel TiO2–Pt@SiO2 nanocomposites with high photocatalytic activity, Nanoscale, 4 (2012) 3242–3247.
  62. G. Liu, K. Du, S. Haussener, K. Wang, Charge transport in two-photon semiconducting structures for solar fuels, ChemSusChem, 9 (2016) 2878–2904.